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Abstract

Multi-object tracking (MOT) aims to build moving tra-
jectories for number-agnostic objects. Modern multi-object
trackers commonly follow the tracking-by-detection strat-
egy. Therefore, fooling detectors can be an effective solution
but it usually requires attacks in multiple successive frames,
resulting in low efficiency. Attacking association processes
improves efficiency but may require model-specific design,
leading to poor generalization. In this paper, we propose a
novel False negative and False positive attack (F&F attack)
mechanism: it perturbs the input image to erase original
detections and to inject deceptive false alarms around orig-
inal ones while integrating the association attack implic-
itly. The mechanism can produce effective identity switches
against multi-object trackers by only fooling detectors in
a few frames. To demonstrate the flexibility of the mech-
anism, we deploy it to three multi-object trackers (Byte-
Track, SORT, and CenterTrack) which are enabled by two
representative detectors (YOLOX and CenterNet). Compre-
hensive experiments on MOT17 and MOT20 datasets show
that our method significantly outperforms existing attack-
ers, revealing the vulnerability of the tracking-by-detection
paradigm to detection attacks.

1. Introduction
As a common visual perception task, multi-object track-

ing (MOT) aims to build moving trajectories for number-
agnostic objects. This requires the multi-object tracker
to be capable of perceiving the birth, continuation, and
termination of targets. To this end, most MOT methods
[33, 22, 37, 34] follow the tracking-by-detection paradigm,
working together with a detector [12, 38]. Given a new
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Attack ByteTrack
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Figure 1: By erasing original detections and injecting de-
ceptive false alarms around the original ones, our method
misleads multi-object trackers to switch tracking identities
of most targets after only attacking 1 or 2 frames. Bound-
ing boxes with different colors represent different identities.
Best viewed in color.

frame, the detector first finds all objects of interest. These
detections are then associated with historical trajectories by
various cues, like motion cues [3, 33, 37] and appearance
cues [34, 29]. It has important applications in surveillance,
autonomous driving, robotics [19], etc. Despite having been
studied for decades and its importance, the robustness of
MOT to attacks has just gained attention in recent years.
In many other computer vision problems, numerous works
have studied adversarial attacks against various visual per-
ception tasks such as detection [28, 30], tracking [32, 14],
semantic segmentation [30], etc since the vulnerability of
deep learning models to adversarial examples is first inves-
tigated in [27].

As detection is fundamental to tracking, attacking the de-
tectors is a primary solution for the MOT attack. By utiliz-

https://infzhou.github.io/FnFAttack/index.html


ing the detection attacker, Daedalus [28], to produce dense
false alarms, MOT is vulnerable to the attack in tracking
targets of medium sizes (discussed in our experiments) and
incurs a large number of identity switches. Also, the false
negative attack, by making the object invisible to the model,
has shown its effectiveness in single object tracking [32].
However, Daedalus shows poor effectiveness in attacking
targets with large sizes, because the sizes of predicted boxes
in Daedalus are extremely compressed to evade the non-
maximum suppression (NMS) process. For false negative
attack, successive attacks for a long period (e.g., 30 frames)
are required to delete a trajectory as MOT usually adopts a
“reserved period” [33, 34, 37] to avoid deleting a trajectory
with occasional miss detections or short-term occlusions,
which results in inefficient attacks.

In contrast, the Hijacking attacker [14], focuses on at-
tacking the association process. It cheats the Kalman fil-
ter [15] inside the tracker by shifting the original detec-
tion box in a direction differing from the correct velocity,
which could possibly trigger identity switches by attacking
1 frame. Despite the efficiency, it has three weaknesses. (1)
The one-on-one mapping between shifted boxes and orig-
inal boxes prefers independent perturbations for attacking
each target, which does not hold when simultaneously at-
tacking multiple targets in the scene. (2) It needs to repeti-
tively forward the association component when solving the
optimal shift (to check whether the shifted box is still cor-
rectly associated). (3) Poor performance in attacking multi-
object trackers without Kalman filters.

To achieve both effective and efficient attacks, we pro-
pose the false positive and false negative attack (F&F at-
tack) mechanism, which is a complementary integration of
false alarm attack, false negative attack, and the idea of the
association attack. The inspiration for our attack comes
from the observation that in crowded scenes, severe oc-
clusions between objects and frequent changes in visibil-
ity pose challenges in detection and association, leading
to high probabilities of identity switches. Such challeng-
ing crowded scenes are simulated in our attack by eras-
ing the original detection and injecting multiple deceptive
false alarms around the original one. Specifically, three de-
signs are adopted to increase the threat of false alarm at-
tacks against multi-object trackers. (1) Instead of extremely
compressing the size of each box to achieve a higher false
alarm density, we trade off lower density for larger, more
deceptive false alarms. (2) We erase the original detection
to ensure one of the false alarms inherits the original iden-
tity, misleading association components to get incorrect es-
timations (e.g., velocity estimations). (3) We adopt a shifted
and scaled design for false alarms to better evade NMS and
further mislead association components. Note that, with the
idea of association attack being implicitly integrated, our
method attacks the multi-object tracker by fooling its detec-

tor component alone.
The F&F attack has the following advantages. (1) Ef-

fectiveness. The one-to-many design naturally benefits the
simultaneous attack on multiple targets, as it better tolerates
non-independent perturbations. (2) Simplicity. Our method
efficiently fools multi-object trackers without accessing or
forwarding association components. (3) Flexibility. The
F&F attack is not specifically designed for attacking a cer-
tain multi-object tracker. Instead, attacks against trackers
enabled by the same detectors share the same design. Be-
sides, since detectors often share similar components, the
F&F attack can be deployed on more detector families with
minor modifications. This further broadens the scope of
multi-object trackers at risk. As shown in Fig. 1, by per-
turbing a few frames, our method triggers high identity
switching rates on several multi-object trackers, i.e., Byte-
Track [33], SORT [3], and CenterTrack [37].

To summarize, our contributions are as follows:

• We propose a novel adversarial attack mechanism to
efficiently cheat multi-object trackers by erasing the
original detection, injecting deceptive false alarms,
and integrating the association attack implicitly.

• We show the high flexibility of the mechanism by de-
ploying it to different types of multi-object trackers.

• 24 experiments are constructed for four attackers at-
tacking three modern trackers (CenterTrack, SORT,
and ByteTrack) on two public datasets to study the dif-
ferent attacking behaviors and demonstrate the superi-
ority of the proposed attack.

2. Related Work
2.1. Multi-Object Tracking

Given a video sequence, MOT builds moving trajecto-
ries for number-agnostic objects [20]. Most modern MOT
methods [33, 22, 37, 34, 4, 8, 36] follow the tracking-by-
detection paradigm. These methods can be roughly grouped
into online ones [33, 37, 34, 29], where trajectories are ex-
tended at each time step, and offline ones [4, 8], which up-
date trajectories after processing a batch of frames. In the
tracking-by-detection paradigm, a detector [38, 24, 12] is
first adopted to find objects of interest. Trackers then link
these detections to historical trajectories by various cues.
For example, the Kalman filter [15] is commonly used to
estimate the motion cues. Zhou et al. [37] proposed to
link targets by estimating their displacements across adja-
cent frames. FairMOT [34] and JDE [29] involved appear-
ance embeddings to boost tracking performance. Recent
transformer-based multi-object trackers [22, 26] used query
embeddings to implicitly achieve detection and association,
resulting in a new tracking paradigm.



Enabled by advanced detectors, modern multi-object
trackers have achieved significant progress. However, the
strong dependency on detectors may expose the vulnerabil-
ity of MOT methods to detection attackers. In this paper,
we reveal this risk by introducing a novel attack method,
which achieves efficient attacks against multi-object track-
ers by solely fooling detectors.

2.2. Adversarial Attack

The vulnerability of deep learning models to adversarial
examples was first investigated by Szegedy et al. [27]. After
that, several methods, like FGSM[13] and PGD [21] were
proposed to solve the perturbation efficiently. Recently, nu-
merous works have studied adversarial attacks against vari-
ous visual perception tasks such as detection [28, 30], track-
ing [32, 14], semantic segmentation [30], etc. Some stud-
ies [31, 6, 35, 10] further brought adversarial attacks to the
physical world.

Close to MOT, several single object tracking (SOT) at-
tackers [32, 7] were proposed based on different intuitions.
Besides, there are some detection attackers aiming to trig-
ger different misbehaviors, like missed detections [17], or
false alarms [28], etc. However, these methods show lim-
ited effectiveness in attacking multi-object trackers due to
the mission gap. Recently, Jia et al. [14] introduced an MOT
attacker that focused on cheating the Kalman filter [15] in-
side the multi-object tracker. To maximize the effective-
ness, [14] repetitively forwards the association component
when solving the perturbation. Instead, we propose to at-
tack multi-object trackers by fooling detectors alone, treat-
ing the association component as a black box.

3. False Negative and False Positive Attack
In this section, we first introduce the attack formulation

in Sec. 3.1. Then, in Sec. 3.2, we explain the proposed
attacking mechanism of misleading the trackers to switch
tracking identities. Finally, in Sec. 3.3, we deploy the mech-
anism to attack different types of multi-object trackers.

3.1. Attack Formulation

Given a sequence of video frames V =
{I1, · · · , It, · · · , IN}, where It ∈ RW×H×3,
we add perturbations to a small subset of the
frames, resulting in an attacked video Ṽ =
{I1, · · · , It−1, Ĩt, · · · , Ĩt+n−1, It+n, · · · , IN}, where
I, Ĩ indicate original frames and attacked frames, respec-
tively. The goal is to mislead multi-object trackers to switch
tracking identities after the attack (i.e., since frame It+n).

A tracking-by-detection MOT system primarily consists
of two parts, a detector module, and an association module.
We deceive the MOT system by only attacking its detec-
tion module. To this end, we conduct targeted attacks on
detectors with the aim of producing a targeted detection set

Algorithm 1: F&F Attack
Data: Video subsequence V = [It, ..., It+n−1] to be

attacked, object detector D(·).
Result: Attacked video subsequence

Ṽ = [Ĩt, ..., Ĩt+n−1].
1 Ṽ = [ ]
2 for I in V do
3 D∗ ← D(I)

/* get targeted detections according to

Sec. 3.3 */

4 D← get targeted detection(D∗)
/* solve perturbations with Eq. 1-2 */

5 Ĩ ← solve perturbation(I,D, D(·))
6 Ṽ.append(Ĩ)
7 end

that misleads the association and triggers identity switches
to the maximum. In our experiments, we implement the
detection attack under a white-box assumption but treat the
association module as a black box.

Formally, given a detector D(·|θ) parameterized by θ,
the original input image I , and the targeted detection set
D, the perturbations δ is optimized to minimize the targeted
loss Ltgt (D and Ltgt are detailed in Sec. 3.3):

δ = argmin
δ,∥δ∥∞≤ϵ

Ltgt(D(I + δ|θ),D). (1)

We adopt PGD [21] to iteratively solve the perturbations
under ℓ∞-norm constraint:

δr+1 = clip[−ϵ,ϵ]∩[−I,1−I](δ
r+αsgn(∇δLtgt(D(I+δ|θ),D))),

(2)
where ϵ limits the maximum perturbation for each pixel, α
controls the step length of each iteration, ∇ indicates the
gradient operation, and sgn(·) extracts the sign of gradients.
Perturbations are clipped to meet the ℓ∞-norm constraint
and to ensure the perturbed input is within [0, 1]. We use
zero initialization for δ0, and obtain the final perturbation
δR after R iterations.

Alg. 1 shows the pipeline of our method. To conduct at-
tacks on frame It, we first get the original detection set D∗

by forwarding the detector D(·) with the clean image It.
Then we get targeted detections by erasing original detec-
tions and injecting deceptive false alarms according to the
design specified in Sec. 3.3. Finally, the perturbation δ is
solved by PGD [21] aiming at minimizing Eq. 1. As we do
not access or forward association components when solving
perturbations, our attack pipeline is concise.

3.2. F&F Attack Mechanism

The main idea of the mechanism is two-fold. (1) F&F
injects false alarms into the attacked frame Ĩt, letting them
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Figure 2: Diagrams of existing attackers and an example of our method. In the example, circles filled with different colors
identify detections with different tracking identities. To attack the target dk|t−1 with tracking identity k, we erase its original
detection d|t in the attacked frame Ĩt and inject 4 deceptive false alarms {d̃1|t, d̃2|t, d̃3|t, d̃4|t} around d|t. With such pertur-
bation at time step t, the tracker may link one of the false alarms to the existing trajectory with identity k (resulting in d̃k1 |t)
and spawn 3 new trajectories for the remaining false alarms with new identities, l, m, n, respectively. Then, at time step t+1,
the 4 trajectories with identities k, l, m, n compete for the detection d|t+1 in the unattacked frame It+1. An identity switch
(IDSW) occurs if one of the newly spawned trajectories (i.e., with the identity of n in the figure) wins the competition.

compete for the correct tracking ID and prevent the ID from
being correctly propagated from It−1 to It+1. (2) F&F
erases the correct detections in the attacked frame Ĩt, en-
suring that the ID in frame It−1 is inherited by one of the
false alarms.

To elaborate on the mechanism, we construct an example
in Fig. 2. For simplicity, we analyze the case of tracking a
single target and we neglect the probationary period. We
denote each original detection at time step t as d|t. It is
further denoted by dk|t if it inherits the tracking identity
k after association. Similarly, false alarms are denoted by
d̃i|t where i indicates the detection index. Assuming that
trackers conduct associations in a greedy manner, then false
alarms with indexes of a = argmaxi(sim(dk|t−1, d̃i|t))
and b = argmaxi(sim(dk|t+1, d̃i|t)) transfer the identity
k in time step t − 1 → t and t → t + 1, respectively,
where sim(·, ·) indicates the similarity measurement (e.g.,
intersection over union (IoU)) used in association. In Fig. 2,
we have a = 1 and b = 4. One identity switch is triggered
if Eq. 3 to Eq. 6 are satisfied:

sim(dk|t−1, d̃a|t) > τ, (3)

sim(d|t+1, d̃b|t) > τ, (4)

a ̸= b, (5)

sim(d|t+1, d̃b|t) > sim(d|t+1, d
k|t−1), (6)

where τ indicates the prior similarity threshold inside track-
ers above which the association is accepted. Eq. 3 to Eq. 5
ensure that separate false alarms (with indexes of a and b)
transfer the identity in time step t − 1 → t and t → t + 1,

respectively. Eq. 6 avoids the rebirth of the original trajec-
tory.

Notice that the attack mechanism does not explicitly ac-
cess the similarity measurement inside the tracker (i.e., the
function sum(·, ·)). Instead, it maximizes the probability
of Eq. 3 to Eq. 6 being met through the design of targeted
detections D (detailed in Sec. 3.3).

3.3. Targeted Attack Design

3.3.1 Target-Size-Aware Shift Strategy

Two conflicts pose challenges in the design of the F&F at-
tack. Firstly, association modules and detector modules
have conflicted preferences for box overlap. Association
modules favor greater overlaps (higher similarity), but heav-
ily overlapped boxes are eliminated by NMS. Secondly, the
F&F attack requires dense isolated responses on the confi-
dence prediction map (in order to erase the original detec-
tion and inject false alarms near the original ones), which
conflict with the spatial smoothness of network predictions.

To address these challenges, we propose a target-size-
aware shift strategy. In specific, we set targeted detections
D by replacing each original detection with γ (e.g., γ = 4)
shifted false alarms so that (1) leaves space for smooth vari-
ations in the confidence prediction map and (2) makes the
overlaps between false alarms and original detections de-
ceptive (i.e, neither be dropped by NMS nor be rejected in
association). Each false alarm is shifted by (κw, κh) away
from the original one in γ different directions, where κ con-
trols the overlaps between shifted false alarms, w and h
are the width and height of original detection, respectively.
Another benefit of this design is its ability to perturb the
state estimation (e.g., velocity estimation) of the association
module.



Additionally, in order to further reduce the overlap be-
tween false alarms and to further mislead association mod-
ules, the height and width of false alarms are respectively
scaled to sh and sw, where the hyperparameter s ∈ [0, 1].
By involving translation and scaling, F&F integrates the
idea of association attack. We discuss the settings of (κ, s)
in Sec. 4.3.

3.3.2 Perturbation Solving

Targeted Loss for Attacking ByteTrack. The targeted loss
is designed as

LYOLOX
tgt = Lobj + λLL1, (7)

where Lobj and LL1 are inherited from the training loss of
YOLOX [12], supervising the classification task and the re-
gression task, respectively. We use λ = 1.

Before calculating the loss, a detector typically needs
a strategy to assign anchors to ground truth. Originally,
YOLOX adopts a dynamic k assignment policy [11] dur-
ing training, based on the intuition that the number of posi-
tive anchors should differ across targets with different sizes
and occlusion states. However, using this biased assign-
ment mechanism when minimizing the targeted attack loss
Ltgt leads to imbalanced attack performance across targets
and limits the number of positive anchors assigned to each
target. We address these two limitations by fixing the k to a
reasonably large value (e.g., k = 16).

As SORT [3] and ByteTrack are enabled by the same
detector in our experiments, the F&F attack on SORT thus
shares the same design of attacking ByteTrack.

Targeted Loss for Attacking CenterTrack. To showcase
the flexibility of the F&F attack, we deploy it to attack Cen-
terTack [37], which is enabled by another representative de-
tector (CenterNet [38]). Given the targeted detection set D,
we render a center heatmap following [38]. Similar to at-
tacking ByteTrack, the targeted loss for attacking Center-
Track is designed as

LCenterTrack
tgt = Lp + λsLs, (8)

where Lp supervises the heatmap prediction and Ls super-
vises the box regression. Both of them are inherited from
the training loss of CenterTrack [37]. We set λs = 0.1.

Considering that detectors often share similar com-
ponents (e.g., a classification branch and a localization
branch), the F&F attack can be easily deployed to attack
more detector families with minor modifications, thereby
expanding the scope of threatened MOT systems.

... ...

Attacked framesClean frames Clean frames

Calculate immediate identity switches IDSWim

Clean frames

... ...

Wait for K. F.

Evaluate MOT metrics without attackOriginal tracking results
Attacked tracking results

Ground truth
Evaluate MOT metrics with attack

Figure 3: The attack performance evaluation contains two
parts. (1) We evaluate the MOT metrics of newly assembled
sequences containing unattacked frames from each result
(in gray). (2) Attack success rate is defined as the ratio of
immediate identity switches IDSWim right after the attack.

4. Attack Evaluation

4.1. Experiment Methodology

Evaluation Metrics. As shown in Fig. 3, our evaluation
contains two parts. First, given the track results L and L̃ of
the clean sequence and the attacked sequence, respectively,
we assemble new sequences by extracting the parts of
unattacked frames from each result to evaluate the MOT
metrics, including CLEAR [2], IDF1 [25], and HOTA [18].
Note that, we exclude the attacked frames in the evaluation
to avoid distorted or meaningless association metrics.
Second, in order to provide a straight view of attack
performance, we calculate the ratio of immediate identity
switches IDSWim right after the attack. Considering that
the Kalman filter may require several time steps to catch up
with rapidly changing observations (detections), we leave
one additional clean frame waiting for the Kalman filter
before counting the IDSWim (otherwise, some targets may
be regarded as missed detections instead of experiencing
identity switching).

Datasets. We conduct experiments on two widely used
pedestrian tracking datasets, MOT17 [23] and MOT20 [9].
MOT17 is characterized by various viewpoints and different
target sizes. MOT20 is characterized by high density and
heavy occlusion. Since we need ground truth to evaluate
the MOT metrics with and without attacks, all experiments
are conducted on the training splits of two datasets. Follow-
ing common practices [33, 34, 37], we split each training
sequence into two halves, using the first half for training
models and the rest for evaluating attacks. To enrich the
sequence, we split each evaluation sequence into segments
every 30 frames, resulting in 83 segments on MOT17 and
148 segments on MOT20. For each segment, we only at-
tack once, starting from the 5th frame (instead of starting
from the beginning frame) for practice considerations.



Table 1: Detailed experimental settings.

Tracker ϵ α #iter P τNMS τtrack #Fm.

ByteTrack 4/255 1/255 150 1 0.7 0.1 3
SORT 4/255 1/255 150 1 0.7 0.3 3

CenterTrack 8/255 1/255 60 0 - - 1

Implementation Details. We evaluate our attack against
three multi-object trackers, CenterTrack [37], Byte-
Track [33], and SORT [3]. Detailed experimental settings
are provided in Table 1, where #iter is the number of itera-
tions, P is the probation period, τNMS is the NMS threshold,
τtrack is the IoU threshold below which an association is re-
jected, and #Fm. is the number of attacked frames. For Cen-
terTrack and ByteTrack, we adopt their official implemen-
tations and follow the same tracking settings as the authors.
For SORT, we adopt the implementation from ByteTrack,
which is enabled by the YOLOX detector. We set greater
ϵ when attacking CenterTrack because it stacks two frames
as input but we only add perturbations to a single frame.
Besides, we find trackers using standard NMS operations
slightly benefit from more iterations. We set #iter=150,
γ=4, κ=0.2, and s=0.8 by default when attacking ByteTrack
and SORT. We provide discussions of better effectiveness
and fewer iterations in the ablation study. More implemen-
tation details can be found in the supplement.

4.2. Compare to Existing Attackers

In Table 2, we compare our method with three baseline
attackers: (1) False Negative attacker [32, 17], which is
usually used in attacking detectors and single-object track-
ers, aiming to make the target invisible to the model; (2)
Daedalus [28], a detection attacker, which induces dense
false alarms by raising the confidence predictions along
with compressing the predicted sizes of boxes; (3) Hijack-
ing [14], an MOT attacker, which is designed to cheat the
Kalman filter inside the tracker. Due to the space limit, we
do not list hybrid metrics (i.e., HOTA and MOTA) consider-
ing that they can be calculated by HOTA =

√
DetA · AssA

and MOTA = 1− FN− FP− IDSW.
According to Table 2, we have the following observa-

tions and analysis.
Effectiveness of Our Attack Mechanism. Shown by the
higher attack success rate IDSWim and the greater decline in
association metrics including AssA, IDF1, and IDSW, our
method significantly and consistently outperforms baseline
attackers. It might be noticed that the decline in detection
metrics (e.g., DetA, FN, and FP) is less remarkable. This is
due to the exclusion of attacked frames during the evalua-
tion, as depicted in Fig. 3.
Superiority to False Negative Attack and Daedalus. The
false negative attack (denoted by “FN Attack”) shows poor
effectiveness because multi-object trackers are designed to
resist occasional miss detections. The Daedalus (false alarm

attack) shows effectiveness in attacking ByteTrack on the
MOT20 dataset, where the majority of the targets are of
medium size. However, its effectiveness remarkably de-
creases when applied to the MOT17 dataset, which con-
tains a variety of object sizes. This validates the sensi-
tivity of Daedalus to target sizes. In contrast, the consis-
tent and better performance of our method suggests that
the weakness of Daedalus is overcome in our design. An-
other observation is that SORT shows robustness against
Daedalus, mainly because it adopts a higher association
threshold (τtrack = 0.3) by default. This higher threshold
rejects the association between trajectories and small-sized
false alarms generated by Daedalus.
Superiority to Hijacking. The Hijacking attack performs
worse on the MOT20 dataset compared to that on MOT17,
while our method exhibits an opposite trend in performance.
Considering the higher target density in the MOT20 dataset,
this highlights the advantage of our one-to-many design.
We provide further visualization analysis in the supplement.
As the Hijacking attack is specifically designed to attack
Kalman filters, our method significantly outperforms Hi-
jacking when the Kalman filter is absent (in CenterTrack),
validating the high flexibility of our method.
Impacts of Different NMS Mechanisms. CenterTrack
adopts a 3 × 3 max pooling operation on the confidence
heatmap as an alternative to classic NMS operation, leading
to the defacto detection set D̂ (obtained by forwarding the
model with the perturbated image) being controllable. With
γ = 4, we inject 4 false alarms for each original detection
in CenterTrack, resulting in an expected value of 75% for
IDSWim, which is close to the experimental results in Ta-
ble 2. In contrast, when attacking YOLOX-enabled track-
ers, the defacto detections D̂ are observed to differ from D
due to the lower controllability of the classic NMS opera-
tion. Benefitting from our modifications in the label assign-
ment strategy, this low controllability yields a higher attack
performance than expected (i.e., IDSWim > 75% when at-
tacking ByteTrack and SORT).

4.3. Ablation Study

As shown in Table 3, we ablate our design on attack-
ing ByteTrack as an example. Two untargeted attackers are
adopted as baselines of our targeted detection design: the
FN attacker, and the FP attacker, where miss detections or
false alarms are blindly induced. The poor performance of
untargeted attackers validates the effectiveness of our tar-
geted design. Besides, the attack performance decreases
without fixing the k in label assignment (denoted by “w/o
fixed k” in Table 3) due to the reduction in the numbers
of deceptive false alarms and the unbalanced attack perfor-
mance between objects with different sizes. Removing the
regression loss LL1 (denoted by “w/o LL1” in Table 3) also
harms the attack effectiveness on ByteTrack. This is mainly



Table 2: Attack performance comparison.

Dataset Tracker Attacker #Fm. IDSWim↑ DetA↓ AssA↓ IDF1↓ FN(%)↑ FP(%)↑ IDSW(%)↑ IDs↑

Clean - - 56.61 82.61 80.11 29.07 2.76 0.23 1615
FN Attack 1 1.05% 56.43 82.34 (-0.27) 79.78 (-0.33) 29.66 2.48 0.25 1614

CenterTrack Daedalus 1 6.27% 56.50 80.80 (-1.81) 78.96 (-1.15) 28.90 3.34 0.43 1809
Hijacking 1 25.12% 56.42 74.68 (-7.93) 75.82 (-4.29) 29.45 2.70 0.81 1712

Ours 1 74.38% 56.23 57.48 (-25.13) 64.93 (-15.18) 28.95 3.40 2.89 2704
Clean - - 66.67 85.50 87.58 17.92 3.88 0.18 1739

FN Attack 3 3.45% 66.34 84.57 (-0.93) 86.78 (-0.80) 18.26 3.99 0.36 1755
MOT17 ByteTrack Daedalus 3 51.21% 61.90 69.28 (-16.22) 77.07 (-10.51) 18.39 6.03 2.57 2768

Hijacking 3 68.17% 65.03 66.34 (-19.16) 77.28 (-10.30) 19.02 3.94 2.14 2218
Ours 3 85.00% 63.83 60.63 (-24.87) 73.76 (-13.82) 17.39 5.05 3.13 3105
Clean - - 66.72 84.15 86.44 16.15 6.21 0.84 2242

FN Attack 3 4.02% 66.58 83.50 (-0.65) 85.89 (-0.55) 16.39 6.21 0.98 2261
SORT Daedalus 3 8.48% 66.55 82.03 (-2.12) 84.53 (-1.91) 16.05 6.58 1.62 2725

Hijacking 3 68.03% 65.91 66.79 (-17.36) 76.04 (-10.40) 16.92 6.17 2.98 3077
Ours 3 78.29% 65.67 63.67 (-20.48) 73.89 (-12.55) 16.24 6.58 3.81 3686

Clean - - 62.56 82.29 86.46 20.57 2.91 0.15 19268
FN Attack 1 0.62% 61.82 81.54 (-0.75) 85.60 (-0.86) 22.04 2.44 0.17 19189

CenterTrack Daedalus 1 18.36% 61.68 75.40 (-6.89) 81.74 (-4.72) 20.94 3.73 0.86 22841
Hijacking 1 37.09% 61.90 68.77 (-13.52) 78.78 (-7.68) 20.66 3.83 1.20 21733

Ours 1 75.09% 60.18 52.66 (-29.63) 65.46 (-21.00) 18.60 8.26 4.44 41685
Clean - - 71.64 85.42 92.77 10.67 2.32 0.11 20106

FN Attack 3 0.35% 71.48 85.35 (-0.07) 92.63 (-0.14) 11.00 2.19 0.11 20074
MOT20 ByteTrack Daedalus 3 80.96% 67.75 62.74 (-22.68) 78.67 (-14.10) 11.25 3.53 2.86 35684

Hijacking 3 57.97% 69.98 66.87 (-18.55) 82.89 (-9.88) 11.63 2.62 2.02 22975
Ours 3 88.56% 69.54 61.00 (-24.42) 78.25 (-14.52) 10.14 3.26 3.09 37256
Clean - - 72.51 85.44 93.14 9.58 2.88 0.21 22022

FN Attack 3 0.78% 72.50 85.39 (-0.05) 93.10 (-0.04) 9.62 2.86 0.21 22010
SORT Daedalus 3 6.32% 72.34 84.10 (-1.34) 92.10 (-1.04) 9.59 3.06 0.44 23883

Hijacking 3 58.92% 71.71 68.87 (-16.57) 83.27 (-9.87) 10.19 3.07 2.23 28950
Ours 3 87.59% 71.09 61.49 (-23.95) 77.76 (-15.38) 9.58 3.14 3.47 40376

Table 3: Ablation study on the MOT17 dataset.

Tracker Ablations IDSW(im.)↑ ∆AssA↓ ∆IDF1↓

FN attack 3.45% -0.93 -0.80
FP attack 50.17% -17.74 -11.57

ByteTrack w/o fixed k 71.16% -19.84 -11.04
w/o LL1 64.05% -18.02 -10.5

Full method 85.00% -24.87 -13.82

because ByteTrack performs association based on box rep-
resentation. The regression loss LL1 ensures that deceptive
false alarms are injected at expected locations with expected
sizes.

To further highlight the advancement of our method, we
analyze the attack performance under different experimen-
tal settings. If not specified, experiments are conducted on
attacking ByteTrack.
Object sizes. We investigate the attack performance
against different object sizes in Fig. 4a, where we follow
the definition of object sizes from the COCO dataset [16]
and we use red bars to indicate the object size distribution
in the validation split of MOT17 dataset. It can be observed
that Daedalus has poor effectiveness on small-sized objects
and extremely poor effectiveness on large-sized objects,
while the Hijacking attack and our method are not sensitive

to object size.
Number of attacked frames. A probationary period is
adopted by some trackers [33, 34, 3] when spawning a new
trajectory in order to prevent tracking of occasional false
positives. Due to the probationary period within ByteTrack
and SORT, we set the default number of attacked frames
to 3 when attacking these two trackers. As an ablation,
we evaluate the attack performance by attacking {1, 2, 3,
4, 5} frames in Fig. 4b. Our method shows a significant
increase in performance when the attacked frame number
(i.e., 2) exceeds the probationary period (i.e., 1) and
shows constantly better performance compared to baseline
attackers. After each attack, the Hijacking attacker checks
whether each target has been successfully attacked and only
attacks the unattacked targets in subsequent frames, leading
to a decreasing attack difficulty. However, our method does
not perform this check because we promise not to access
the association module.
Covariance of measurement noise. The prior mea-
surement covariance settings in the Kalman filter affect
the effectiveness of the attack. A lower measurement
covariance results in the filter placing more trust in the
measurements (i.e., detections), while a higher one makes
the filter more confident in the predictions. We conduct
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Figure 4: Attack success rate with regard to (a) object sizes (b) the number of attacked frames (c) measurement noise
covariance settings of the Kalman Filter.

Table 4: Attack effectiveness with different shift (κ) and
scale (s) settings on the MOT17 dataset.

κ s IoU1 IoU2 IDSWim(ByteTrack) IDSWim(SORT)

0.1 0.4 0.16 0.33 87.73% 24.18%
0.1 0.6 0.36 0.50 81.73% 80.82%
0.1 0.8 0.64 0.60 73.58% 72.42%
0.2 0.4 0.16 0 94.43% 18.91%
0.2 0.6 0.36 0.20 93.82% 81.04%
0.2 0.8 0.43 0.33 85.00% 78.29%
0.3 0.4 0.16 0 95.02% 11.90%
0.3 0.6 0.23 0 92.62% 48.77%
0.3 0.8 0.28 0.14 83.50% 71.13%

experiments on SORT where a classic Kalman filter is
adopted, supporting the independent adjustment of obser-
vation covariance. The original measurement covariance
is scaled by {0.01×, 0.1×, 1×, 10×, 100×} times in
experiments. As shown in Fig. 4c, our method consistently
outperforms the Hijacking attack under a wide range of
measurement covariance settings.

Better Effectiveness. For the sake of generalization, we
use κ = 0.2 and s = 0.8 for both attacking ByteTrack
and attacking SORT. However, setting specific values for
attacking different trackers can lead to better effectiveness.
Table 4 details the attack performances under different
(κ, s) combinations. In addition, we use IoU1 to denote the
IoU between the original detection and one of its shifted
false alarms, and use IoU2 to denote the maximum IoU
between the shifted false alarms that belong to the same
original detection. According to Table 4, we have two
observations. (1) Setting κ and s to make IoU1 slightly
higher than the association threshold τtrack leads to the
best attack performance. (2) By involving translation and
scaling in our design, the false alarm boxes effectively
evade the NMS (i.e., IoU2 < τNMS).

Fewer Iterations. We report the attack performance using
fewer iterations in Table 5, where we set κ=0.3 and s=0.4
for F&F. F&F achieves an attack success rate of 69.5%
within 10 iterations. To further reduce the time cost of each
iteration, an asynchronous attack (attacking a small subset

Table 5: Experiments of attacking ByteTrack on MOT17
dataset with fewer iterations.

Method Attack Success Rate IDSWim(%) ↑
#iter=2 #iter=4 #iter=6 #iter=8 #iter=10

Daedalus 1.4 10.6 20.6 27.9 36.0
Hijacking 7.0 15.9 22.7 29.5 36.1

Ours 5.5 26.5 47.5 62.0 69.5

Table 6: Effectiveness under common defense algorithms.

No Defense CJ GN SS AT

IDSWim(%) ↑ 91.4 90.8 86.9 75.8 (+EoT) 82.0 (ℓ∞, #iter⇑)

of targets within the image at a time) could be implemented
on the engineering side.

4.4. Discussion

Limitation. Though our method achieves advanced ef-
fectiveness and efficiency in attacking motion-based multi-
object trackers (e.g., ByteTrack, SORT, CenterTrack, etc.),
the effectiveness may degrade when attacking some re-
identification-based trackers due to the natural limitation
of fooling detectors alone. The major challenge lies in
the smooth updating of appearance embeddings inside the
tracker, which leads to the violation of Eq. 5 and Eq. 6. We
elaborate on this limitation in the supplement by deploy-
ing the F&F attack to attack FairMOT [34], where we also
provide suggestions for enhancing the F&F attack. Another
limitation of F&F is that the current version remains in the
digital domain. We leave the implementation in the physical
world as future work.
Defense. Based on the limitation mentioned above,
strengthening the smoothness constraint in state estimation
(e.g., velocity, appearance) can reduce the effectiveness of
F&F, but it may also impact clean tracking performance.
Checking abrupt changes in the number of detections could
be another feasible way. Besides, Table 6 summarizes the
effectiveness of F&F under some common defense algo-
rithms, where we deploy the F&F to attack ByteTrack on
the MOT17 dataset and set κ=0.3, s=0.4, #iter=30, and
ℓ∞=4/255 by default. F&F is found to be robust to color
jitter CJ (where the jitter for each color channel is inde-
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Figure 5: Qualitative results of deploying F&F to attack ByteTrack. We list the detection results in the first line and the
association results in the second line. Tracking identities are coded by color. The target highlighted by red triangles validates
our hypothesis presented in Fig. 2. For more results and analysis please refer to the supplement.

pendently sampled within ±50/255) and minor Gaussian
noise GN (σ=2/255). If facilitated by the commonly used
EoT [1] technique, F&F becomes robust to local spatial
smoothing SS (e.g., 3x3 average smoothing). Finally, F&F
keeps effective against adversarially trained AT [5] models
if larger bounds and greater iteration numbers are allowed
(e.g., ℓ∞=64/255, #iter=80).

5. Conclusion

In this paper, we propose a novel attack mechanism,
F&F attack, which attacks multi-object trackers by solely
conducting detection attacks while integrating the associ-
ation attack implicitly. The challenging crowded scenes
are simulated by erasing original detections along with in-
jecting deceptive false alarms, finally misleading trackers
to switch tracking identities. The flexibility of the pro-
posed mechanism is demonstrated by deploying it to attack
three multi-object trackers, ByteTrack, SORT, and Center-
Track, which are enabled by detectors using different NMS
mechanisms. The advanced performance of our method is
witnessed in comprehensive experiments on MOT17 and
MOT20 datasets. We hope that the vulnerability of MOT
methods to detection attacks revealed in this paper can in-
spire the MOT community.
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Konrad Schindler. Mot16: A benchmark for multi-object
tracking. arXiv preprint arXiv:1603.00831, 2016. 5

[24] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 2

[25] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In European conference
on computer vision, pages 17–35. Springer, 2016. 5

[26] Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie,
Zehuan Yuan, Changhu Wang, and Ping Luo. Transtrack:
Multiple object tracking with transformer. arXiv preprint
arXiv:2012.15460, 2020. 2

[27] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1, 3

[28] Derui Wang, Chaoran Li, Sheng Wen, Qing-Long Han,
Surya Nepal, Xiangyu Zhang, and Yang Xiang. Daedalus:
Breaking nonmaximum suppression in object detection via
adversarial examples. IEEE Transactions on Cybernetics,
52(8):7427–7440, 2021. 1, 2, 3, 6

[29] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and
Shengjin Wang. Towards real-time multi-object tracking. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16,
pages 107–122. Springer, 2020. 1, 2

[30] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,
Lingxi Xie, and Alan Yuille. Adversarial examples for se-
mantic segmentation and object detection. In Proceedings of
the IEEE international conference on computer vision, pages
1369–1378, 2017. 1, 3

[31] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Meng-
shu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, and
Xue Lin. Adversarial t-shirt! evading person detectors in
a physical world. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part V 16, pages 665–681. Springer, 2020. 3

[32] Bin Yan, Dong Wang, Huchuan Lu, and Xiaoyun Yang.
Cooling-shrinking attack: Blinding the tracker with imper-
ceptible noises. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 990–999,
2020. 1, 2, 3, 6

[33] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng
Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang
Wang. Bytetrack: Multi-object tracking by associating every
detection box. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXII, pages 1–21. Springer, 2022. 1, 2, 5,
6, 7

[34] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. International
Journal of Computer Vision, 129:3069–3087, 2021. 1, 2, 5,
7, 8

[35] Yiqi Zhong, Xianming Liu, Deming Zhai, Junjun Jiang, and
Xiangyang Ji. Shadows can be dangerous: Stealthy and
effective physical-world adversarial attack by natural phe-
nomenon. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 15345–
15354, 2022. 3

[36] Tao Zhou, Wenhan Luo, Zhiguo Shi, Jiming Chen, and Qi
Ye. Apptracker: Improving tracking multiple objects in low-



frame-rate videos. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pages 6664–6674, 2022.
2

[37] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.
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This document contains additional material for the main
submission. Sec. A provides further implementation details
for our method. Sec. B details the weakness of the one-to-
one design [3] by a visualization example. Sec. C elaborates
on the limitation of the proposed F&F attacker by deploying
it to attack FairMOT [7], where we also provide suggestions
for enhancing the F&F attacker. Sec. D contains further
qualitative analysis of our method.

A. Further Implementation Details
We deploy the proposed F&F attacker on four multi-

object trackers in our experiments, including ByteTrack [6],
SORT [1], CenterTrack [8], and FairMOT [7]. We adopt
the official implementations and tracking configurations for
ByteTrack1, CenterTrack2, and FairMOT3. As for SORT,
we use the implementation from ByteTrack, which is en-
abled by the YOLOX [2] detector. Detailed tracking
configurations are summarized in Table A1, where τNMS
is the NMS threshold, τtrack is the IoU threshold below
which an association is rejected, P is the probation pe-
riod. CenterNet-enabled trackers, like CenterTrack and
FairMOT, use the max pooling operation as an alternative
to classic NMS operations. Besides, CenterTrack and Fair-
MOT do not use explicit IoU thresholds to gate associations.

Table A1: Detailed tracking configurations.

Tracker Detector NMS τNMS τtrack P

ByteTrack YOLOX classic NMS 0.7 0.1 1
SORT YOLOX classic NMS 0.7 0.3 1

CenterTrack CenterNet max pooling - - 0
FairMOT CenterNet max pooling - - 1

A.1. Detailed Design for Attacking CenterNet-
Enabled Trackers

Compared to YOLOX-enabled trackers (e.g., SORT [1],
ByteTrack [6]), trackers enabled by CenterNet [9], like

1https://github.com/ifzhang/ByteTrack
2https://github.com/xingyizhou/CenterTrack
3https://github.com/ifzhang/FairMOT

Table A2: Experiments of attacking CenterTrack with dif-
ferent shift (κ) settings on the MOT17 dataset.

κ rfa IDSWim

0.25 0.75 57.92%
0.375 0.86 65.29%

0.5 0.92 74.38%
0.75 0.99 76.80 %
1.0 1.02 78.85 %
1.5 1.07 79.92%
2.0 1.10 74.81%
2.5 1.11 68.68%
3.0 1.11 62.72%

CenterTrack [8] and FairMOT [7], show a stronger spatial
smoothness on network predictions, especially on center
point estimations, as it is explicitly supervised by target-
size-related Gaussian kernels [5]. When deploying our
method on CenterNet-enabled trackers, each false alarm is
shifted by (κσ, κσ) away from the original detection in dif-
ferent directions, where σ is the radius of the Gaussian ker-
nel corresponding to the original detection. Please note that
this slightly differs from attacking YOLOX-enabled track-
ers (detailed in Sec.3.3.1 in the main text), where we shift
each false alarm by (κw, κh).

To better demonstrate this spatial smoothness, we list the
false alarm ratios rfa under different settings of κ in Ta-
ble A2. Formally, rfa is calculated by rfa = |D̃|/|D|, where
|D̃| is the number of false alarms obtained by feeding the
detector with the attacked image and |D| is the expected
number of false alarms. According to Table A2, when the
spacing between false alarms is not large enough, the false
alarm ratio rfa is lower than expected (i.e., rfa < 1). For ex-
periments reported in the main submission, we use κ = 0.5.

Besides, CenterTrack [8] conducts association based on
center representations rather than based on box representa-
tions. As a result, it shows less sensitivity to the size pre-
diction of the box. Therefore, no scaling is adopted when
attacking CenterTrack (i.e., s = 1).

https://github.com/ifzhang/ByteTrack
https://github.com/xingyizhou/CenterTrack
https://github.com/ifzhang/FairMOT


Expected detections Actual detectionsOriginal detections

Figure A1: Gaps between expected detections and actual
attack results of Hijacking.

B. Weaknesses of One-to-One Design
The Hijacking attacker [3] focuses on misleading the

Kalman filter [4] inside the tracker. When deploying it to
attack multiple targets simultaneously, each original detec-
tion box is translated in the direction opposite to the correct
velocity. The attack effectiveness of this one-to-one design
(each original box corresponds to one translated box) de-
creases as the number of targets increases.

For example, in the crowded scene highlighted in
Fig. A1, the detection set expected by the Hijacking attack
may have an extremely high density. However, due to (1)
conflicting perturbation demands from different target indi-
viduals and (2) high-density detections being suppressed by
NMS, the actual attack results differ significantly from the
expected ones. In contrast, we inject multiple false alarms
with reasonable density for each original target. Such a one-
to-many design is less affected by the above-mentioned fac-
tors.

C. Limitation on Attacking Re-Identification-
Based Trackers

Table A3: Experiments of attacking FairMOT on MOT17
dataset.

F&F attack Lemb β #iter #Fm. ϵ IDSWim

✓ 0.9 60 3 8/255 4.65%
✓ 0.5 60 3 8/255 58.25%
✓ ✓ 0.9 60 3 8/255 51.14%
✓ ✓ 0.9 60 3 12/255 58.50%

Due to the natural limitation of fooling detectors alone,
the effectiveness of the F&F attacker may degrade when at-
tacking some re-identification-based multi-object trackers.
This is primarily due to the smooth updating of appearance
embeddings inside the tracker, which results in the violation
of Eq. 5 and Eq. 6 in the main text. Taking FairMOT [7] as
an example, in the new time step t, the appearance embed-
ding of an associated trajectory is updated by

etsmooth = βet−1
smooth + (1− β)et, (1)

where β is a smoothness factor and is set to 0.9 by default,
indicating the rather low confidence on the new observa-
tion et. As shown in Table A3, by relaxing the β to 0.5,
our method achieves a reasonably good attack success rate
of 58.25%. In order to promote the attack efficiency un-
der original β settings, we suggest pushing the appearance
embeddings of false alarms towards those of original de-
tections by adding one loss item λembLemb (weighted by
λemb = 5) to the targeted loss LCenterTrack

tgt (the design for
attacking CenterTrack in the main text can be reused to at-
tack FairMOT because these two trackers share the same
build-in detector). In specific, we define the loss item as

Lemb = 1− cos(et, ẽt), (2)

where cos(·, ·) measures the cosine distance between em-
beddings, and ẽ indicates the appearance embedding of a
false alarm. This leads to the overall targeted loss of attack-
ing FairMOT being designed as

LFairMOT
tgt = LCenterTrack

tgt + λembLemb. (3)

Enabled by attacking the embedding module with the loss
item Lemb, the attack success rate reaches 51.14%. Besides,
we find that attacks on FairMOT benefit from greater ϵ.

D. Qualitative Analysis
To better illustrate how our method implicitly integrates

the association attack, qualitative results are provided in
Fig. A2.

ByteTrack [6] and SORT [1] take a probation period of
1 frame. Though they do not spawn new trajectories for
false alarms in the first attack frame, our attack has already
started to take effect. Specifically, with the original detec-
tion being erased, one of the shifted false alarms instead in-
herits the original identity, misleading trackers to get incor-
rect estimations (e.g., velocity estimations). This reduces
the probability of the original identity being correctly trans-
mitted across the attack. Therefore, our attack method im-
plicitly integrates the association attack without explicitly
accessing or forwarding the association component.

The identity switches on isolate targets (highlighted by
red triangles) validate the attack example given in Fig. 2 in
the main submission. That is, by injecting deceptive false
alarms, one of the newly spawned trajectories wins the com-
petition, handing over a wrong identity to the detection after
the attack. Besides, deceptive false alarms have a higher ef-
ficiency in attacking targets within a crowd (highlighted by
yellow triangles) because once a target steals the identity
of another target, the latter will also experience an identity
switch.

Different from ByteTrack and SORT, no probation pe-
riod is adopted by CenterTrack [8]. A new trajectory is
spawned once it is detected. Besides, CenterTrack employs
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Figure A2: Qualitative results of our method. For each deployment, we list the detection results (i.e., intermediate products)
in the first line and the association results (i.e., final outputs of trackers) in the second line. Tracking identities are coded
by color. The red triangles show examples of attacking isolated targets and the yellow triangles show examples of attacking
targets within a crowd. For more details please refer to the document.

an aggressive trajectory update strategy, placing 100% con-
fidence in the latest observations. This makes CenterTrack
more vulnerable to our attacks. By attacking only 1 frame,
our method achieves an identity switch rate of about 75%.
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