
APPTracker: Improving Tracking Multiple Objects in
Low-Frame-Rate Videos

Tao Zhou
Zhejiang University

zhoutao2015@zju.edu.cn

Wenhan Luo
Sun Yat-sen University
whluo.china@gmail.com

Zhiguo Shi∗
Zhejiang University
shizg@zju.edu.cn

Jiming Chen
Zhejiang University
cjm@zju.edu.cn

Qi Ye†
Zhejiang University
qi.ye@zju.edu.cn

ABSTRACT
Multi-object tracking (MOT) in the scenario of low-frame-rate
videos is a promising solution for deploying MOT methods on
edge devices with limited computing, storage, power, and transmit-
ting bandwidth. Tracking with a low frame rate poses particular
challenges in the association stage as objects in two successive
frames typically exhibit much quicker variations in locations, ve-
locities, appearances, and visibilities than those in normal frame
rates. In this paper, we observe severe performance degeneration
of many existing association strategies caused by such variations.
Though optical-flow-based methods like CenterTrack can handle
the large displacement to some extent due to their large receptive
field, the temporally local nature makes them fail to give correct
displacement estimations of objects whose visibility flip within
adjacent frames. To overcome the local nature of optical-flow-based
methods, we propose an online tracking method by extending the
CenterTrack architecture with a new head, named APP, to recognize
unreliable displacement estimations. Then we design a two-stage
association policy where displacement estimations or historical
motion cues are leveraged in the corresponding stage according to
APP predictions. Our method, with little additional computational
overhead, shows robustness in preserving identities in low-frame-
rate video sequences. Experimental results on public datasets in
various low-frame-rate settings demonstrate the advantages of the
proposed method.

CCS CONCEPTS
• Computing methodologies→ Artificial Intelligence; Computer
vision.
∗Zhiguo Shi is with the College of Information Science and Electronic Engineering,
Zhejiang University, Hangzhou, China, and also with the International Joint Innovation
Center, Zhejiang University, Haining, China.
†Corresponding Author Qi Ye. Qi Ye is with the College of Control Science and
Engineering, the State Key Laboratory of Industrial Control Technology, Zhejiang
University, and also with the Key Laboratory of Collaborative Sensing and Autonomous
Unmanned Systems of Zhejiang Province.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3548162

KEYWORDS
Multi-object tracking, low-frame-rate videos, occlusion handling

ACM Reference Format:
Tao Zhou, Wenhan Luo, Zhiguo Shi, Jiming Chen, and Qi Ye. 2022. APP-
Tracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos.
In Proceedings of the 30th ACM International Conference on Multimedia
(MM ’22), October 10–14, 2022, Lisboa, Portugal. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3503161.3548162

1 INTRODUCTION
In multi-object tracking (MOT) [24], objects of interest are usually
required to be detected and tracked in videos recorded with a frame
rate of about 30 FPS. The problem has been studied for decades
and tremendous progress has been achieved. However, deploying
the existing methods on edge devices encounters challenges due
to the constraints in power, computing, storage, and transmitting
bandwidth. A potential way to solve the challenges is to decrease the
capturing frame rate, but the decreased frame rate causes various
difficulties in tracking multiple objects robustly.

Specifically, as shown in Fig. 1, there are several challenges in
tracking multiple objects in low-frame-rate videos. First, the dis-
placement of objects between frames becomes larger; in some cases,
two detections of the same target in two consecutive frames even
have no overlap. Methods [2, 27, 35] that assume objects moving
slightly between frames thus fail in low-frame-rate cases (shown
in Fig. 1a). Besides, the larger displacement leads to the failure of
motion models (like the Kalman filter [13]) with zero-velocity ini-
tialization assumptions. Thus, as shown in Fig. 1b, the effectiveness
of methods [4, 47] which heavily rely on motion models is limited
in low-frame-rate cases.

Second, the appearances and visibilities of objects change more
abruptly. In high frame rate videos, objects are occluded gradually.
While in low-frame-rate videos, one highly visible object in the
previous frame may be occluded in the current frame. The influ-
ence is two-fold. 1) The large difference in appearance and the
different occlusion states of the same target between frames make
the appearance similarity measurement less discriminative (shown
in Fig. 1c1). 2) The objects that appear or disappear around other
continuously visible objects result in further noise in the similarity
matrix.

1To evaluate the performance of the re-identification head of FairMOT [48], we dis-
able the Kalman filter inside the original FairMOT method. Details can be found in
Section 4.5.

https://doi.org/10.1145/3503161.3548162
https://doi.org/10.1145/3503161.3548162

MM ’22, October 10–14, 2022, Lisboa, Portugal Tao Zhou et al.

(e) Ours(a) Tracktor++ (c) FairMOT(b) ByteTrack (d) CenterTrack

Figure 1: Tracking results ofmodern trackers and ourmethod
in low-frame-rate videos. Bounding boxes with different col-
ors represent different identities. Each column shows three
consecutive frames.We use red triangles to highlight identity
switches. While modern trackers fail to handle the quicker
variations in locations, appearances, and visibilities of ob-
jects in low-frame-rate cases, our method shows robustness
in preserving identities. Best viewed in color and by zoom in.

A model with a vision-based motion estimator together with a
sufficient receptive field is expected to address the first challenge.
The recent CenterTrack [49] architecture is therefore selected. It
takes two adjacent frames as input and outputs detections and
displacement estimations (indicated by pink arrows in Fig. 1d).
Without seeking historical information beyond two frames, Center-
Track tracks objects from a temporally local perspective. Enabled
by a deep deformable convolutional neural network (DCN) [8], it
can handle large displacements between frames. However, the local
nature makes CenterTrack suffer from the second challenge. It fails
to give correct displacement estimations for objects having visibil-
ity flips across frames, which results in identity switches (shown in
Fig. 1d).

In this paper, we study the challenges above and propose an on-
line tracker, APPTracker, to track multiple objects in low-frame-rate
videos, aiming at enhancing the ability to preserve identities when
objects are involved in occlusions. To this end, we first propose
an appear predictor (APP) to detect objects that newly appear in
the current frame (i.e. , not visible in the previous frame), akin to
detecting anomalies of optical flows. For an appearing object, the
predictor produces a positive response, implying that the displace-
ment estimation of this object is not reliable. The APP is built on
the CenterTrack architecture by adding the APP head on top of
the output from the backbone, in parallel with other detection and
displacement prediction heads. In Fig. 1e, we highlight recognized
appearing objects by indicating the predicted APP scores on the
right top of corresponding bounding boxes.

Training a robust APP head is challenging. The ratio of emerging
samples is fairly low (less than 10% among all instances) on the
popularly used MOT17 dataset [26]. Thus, we propose a data aug-
mentation strategy, leveraging a large-scale static image dataset [32]
by randomly erasing objects in images to create emerging samples.
Further, to overcome the local weakness of [49] and address the
second challenge, we propose a two-stage matching policy accord-
ing to the predictions from the APP head. In the first stage, we link

non-emerging detections to tracklets with reliable displacement es-
timations. In the second stage, we drop the unreliable displacement
estimations of emerging detections and link these detections by
extending remaining tracklets with motion cues. In this two-stage
manner, the noise inside the similarity matrix involved by visibil-
ity flips is reduced and the local nature is overcome by dropping
unreliable displacement estimations and leveraging historical mo-
tion cues. In Fig. 1e, we employ white arrows to indicate motion
estimations.

We conduct comprehensive experiments on the MOT17 [26] and
MOT20 [10] datasets, demonstrating the robustness of our method
in low-frame-rate cases especially in preserving identities of objects
involving occlusions. With little additional computational overhead,
our method achieves consistent improvement in IDF1 [30] score
compared to the baseline [49] and outperforms the state-of-the-art
methods in low-frame-rate cases. To summarize, our contributions
are as follows:
• We study the challenges of tracking multiple objects in low-
frame-rate videos and design an APP head accompanied by
a novel augmentation strategy to robustly detect unreliable
displacement predictions due to the visibility flips of objects
in low-frame-rate videos.
• A two-stage matching policy is proposed to reduce the noise
involved in the similarity matrix and to leverage historical
motion cues.
• Experimental results on public datasets in various low-frame-
rate settings demonstrate the effectiveness and robustness
of the proposed method.

2 RELATEDWORK
2.1 Tracking by Detection
Most modern multi-object tracking methods follow the tracking-
by-detection paradigm. These methods can be roughly grouped
into online ones [6, 11, 12, 14, 19, 40, 41, 47, 50], which extend the
tracklet at each time step, and offline ones [5, 9, 15, 23, 45], where
the tracklets are updated after processing a batch of frames. In the
tracking-by-detection paradigm, an object detector [7, 21, 28, 29] is
firstly adopted to find all objects in each frame. Then, detections in
different frames are associated by comparing the similarity of their
features extracted through motion models [13, 31], re-identification
(re-ID) models [14, 19, 40], or graph neural networks [5, 9, 12]. As
detection is separated from the association, and the appearance
features are usually discarded or extracted by an extra model during
the association stage, the effectiveness or efficiency is thus limited.

2.2 Joint Detection and Tracking
To reduce the computational cost, recent works [2, 25, 27, 34, 38,
39, 42, 48, 49] make effort to accomplish both tasks with a single
network. For example, Tracktor++ [2] explores the bounding box
regression head of an object detector, such as Faster R-CNN [29],
to predict the position of an object in the next frame, thereby con-
verting a detector into a tracker. Chained-Tracker [27] takes two
adjacent frames as input and regresses a pair of bounding boxes
for the same target. CenterTrack [49] takes two adjacent frames
together with a heatmap rendered from the tracked object centers
as input and outputs detections together with their displacement

APPTracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

estimations. JDE [39] and FairMOT [48] jointly accomplish object
detection and re-identification in a single network. JDE [39] uses the
architecture of the Feature Pyramid Network (FPN) [20] and outputs
a dense prediction map containing box classification results, box
regression coefficients, and a dense embedding map. FairMOT [48]
adopts a similar manner but replaces the backbone network with
an encoder-decoder network [44]. Its detector and appearance em-
bedding extractor act in a center-based manner. The fairness of the
detection task and the re-identification task is studied in FairMOT.
All these methods are designed to track objects in normal frame
rate videos. However, their robustness with low-frame-rate inputs
has not been well studied.

2.3 Tracking Objects in Challenging Scenarios
With the development of multi-object trackers, recent works [2,
31, 33, 36, 46, 47] start to focus on tracking multiple objects in
challenging scenarios. For example, Tracktor++ [2] evaluates the
performance of several state-of-the-art methods for tracking objects
of small size, low visibilities, and long-term occlusions. Besides, they
evaluate the robustness of their model with low-frame-rate inputs.
ByteTrack [47], different from most tracking-by-detection methods
which only associate detections whose scores are higher than a
threshold, proposes to associate low score detections with motion
cues. ArTIST [31] proposes a probabilistic autoregressive motion
model to deal with long-term occlusions. Close to our approach,
Tokmakov et al. [37] extends the CenterTrack [49] architecture from
pairs of frames as input to arbitrary video sequences by injecting a
convolutional gated recurrent unit (ConvGRU) [1]. During training,
it supervises the displacement predictions of almost all objects
observed in history, rather than only supervising those of objects
which are both visible in adjacent frames. It thus addresses the
temporally local weakness of CenterTrack [49]. However, as pointed
out by the author [37], their model is data-hungry and the receptive
field is limited by the depth of the ConvGRU, which may limit its
robustness in low-frame-rate cases.

3 PROPOSED METHOD
Given a sequence of video frames {𝐼1, · · · , 𝐼 𝑖 , · · · , 𝐼𝑛}, where 𝐼 𝑖 ∈
R𝑊 ×𝐻×3, the multi-object tracking task is to detect all the objects of
interest, and to assign a unique and consistent identity to each object
across frames, outputing a set of tracklets L = {𝑙𝑡𝑠1 :𝑡𝑒11 , 𝑙

𝑡𝑠2 :𝑡𝑒2
2 , · · · }.

Each tracklet 𝑙
𝑡𝑠𝑗 :𝑡𝑒𝑗
𝑗

contains a set of bounding boxes, starting at
the time step 𝑡𝑠 𝑗 and terminating at 𝑡𝑒 𝑗 . Following [49], we define
the notations in a local perspective for simplicity. In particular, we
employ L𝑡−1 = {𝑙𝑡−11 , 𝑙𝑡−12 , · · · } to denote tracklet set in the time
step 𝑡 − 1, where each tracklet 𝑙𝑡−1

𝑗
= (p, s, v,𝑤, 𝑖𝑑) is described by

its center location p ∈ R2, size s ∈ R2, velocity estimation v ∈ R2,
detection confidence𝑤 ∈ [0, 1], and unique identity 𝑖𝑑 ∈ I. Given
the tracklet set L𝑡−1 and the 𝑡 th frame 𝐼𝑡 , we first detect the objects
O𝑡 = {𝑜𝑡1, 𝑜

𝑡
2, · · · } in frame 𝐼𝑡 , and then determine their identities

by associating them with the tracklet set L𝑡−1.
To address the local nature of CenterTrack [43], we propose a

solution with the following advances. Fig. 2 shows an overview of
our method. Firstly, we build an APP head on top of the CenterTrack
architecture [49] to recognize unreliable displacement estimations

in Section 3.1. To improve the robustness of APP predictions, we
propose a new augmentation strategy to pretrain the APP head on
static image data in Section 3.2. Secondly, to reduce the noise in the
similarity matrix involved by visibility flips and leverage historical
motion cues, detections are associated with tracklets in a two-stage
manner in Section 3.3.

3.1 Learning to Recognize Appearing Objects
We build our method on top of the CenterTrack [49] architecture.
CenterTrack takes two adjacent frames {𝐼𝑡−1, 𝐼𝑡 } together with
a heatmap 𝐻𝑡−1 rendered from the object centers in frame 𝐼𝑡−1

as input. The three inputs first go through three individual 7 × 7
convolutional layers and then are accumulated and sent into a
backbone network. Several individual heads are then adopted to
produce the low-resolution heatmap 𝑌 𝑡 ∈ [0, 1]

𝑊
𝑅
×𝐻

𝑅
×1, the size

map 𝑆𝑡 ∈ R
𝑊
𝑅
×𝐻

𝑅
×2, and the displacement map �̂�𝑡 ∈ R

𝑊
𝑅
×𝐻

𝑅
×2,

etc. 𝑅 = 4 is the downsampling factor. The center location p𝑡 ∈ R2,
box size s𝑡 ∈ R2, and corresponding displacement d𝑡 ∈ R2 of each
detection 𝑜𝑡

𝑖
is then decoded from these maps. The displacement

estimations d̂𝑡 are used to warp detection centers p̂𝑡 in 𝐼𝑡 to their
locations in 𝐼𝑡−1 by calculating p̂𝑡 − d̂𝑡 . The detections O𝑡 are then
linked to tracklets L𝑡−1 by matching the warped detection centers
with the tracklet centers in a greedy manner, resulting in L𝑡 .

However, in the training stage of [49], the displacement esti-
mation head is only supervised by objects that are highly visible
in both adjacent frames 𝐼𝑡−1 and 𝐼𝑡 . Given this, in the inference
stage, the displacement estimations corresponding to objects that
newly appear in the current frame 𝐼𝑡 are unreliable. Such unreliable
estimations increase the probability of incorrect associations.

To bridge the gap between training and inferring, we propose to
recognize unreliable displacement estimations by detecting objects
newly appearing in the current frame. Intuitively, it is akin to de-
tecting anomalies of optical flows. To achieve it, we build an APP
head, in parallel with other detection and displacement estimation
heads.

Formally, our model, takes the set of {𝐻𝑡−1, 𝐼𝑡−1, 𝐼𝑡 } as input and
outputs all the estimations as [49] does, together with an extra APP
map 𝐴𝑡 ∈ [0, 1]

𝑊
𝑅
×𝐻

𝑅
×1. We generate the ground-truth heatmap

𝐴𝑡 by rendering Gaussian-shaped peaks [18] into 𝐴𝑡 at the centers
of emerging objects in frame 𝑡 . Some visualized cases are shown
in Fig. 3. Given a ground-truth heatmap 𝐴𝑡 , we supervise the APP
head with a training objective based on the focal loss [18, 21]:

L𝑎 =
1
𝑁

∑︁
𝑥𝑦

{
(1 −𝐴𝑡

𝑥𝑦)𝛼 𝑙𝑜𝑔(𝐴𝑡
𝑥𝑦) if 𝐴𝑡

𝑥𝑦 = 1
(1 −𝐴𝑡

𝑥𝑦)𝛽 (𝐴𝑡
𝑥𝑦)𝛼 𝑙𝑜𝑔(1 −𝐴𝑡

𝑥𝑦) otherwise
, (1)

where 𝑥 and 𝑦 enumerate all pixels in frame 𝐼𝑡 , 𝑁 is the number of
emerging objects, and 𝛼 = 2 and 𝛽 = 4 are hyperparameters of the
focal loss.

For the components sharedwith [49], we follow the same settings
in training losses. The overall training objective is:

L = _𝑎L𝑎 + Lct, (2)

where Lct = _pLp + _sLs + _dLd + _offLoff is the training ob-
jective of original CenterTrack model. _𝑎, _p, _s, _d, _off are hyper-
parameters used to balance the contribution of each loss component.

MM ’22, October 10–14, 2022, Lisboa, Portugal Tao Zhou et al.

Network

Detections with
displacement estimations

APP heatmap

3
2

Inactivate tracklets with velocity estimations
𝑜1
𝑜2
𝑜4

𝑡2 𝑡3

Second
association

First
association

remains 𝑡4

merge 2

1

5

3
6

Final results

Image 𝐼𝑡−2

Image 𝐼𝑡−1 Rendered heatmap 𝐻𝑡−1 Image 𝐼𝑡

Image 𝐼𝑡−1

𝑜3
𝑜5

𝑡1 𝑡5𝑡4

𝑜1
𝑜2
𝑜4

𝑡2 𝑡3

𝑜3
𝑜5

𝑡1 𝑡5𝑡4

⋯
𝑡4

Figure 2: Overview of our method. Our model takes the same input set as [49], outputting detections and displacement
estimations, together with a predicted APP heatmap. According to the APP predictions, the detections in frame 𝐼𝑡 are grouped
into emerging ones {𝑜1, 𝑜2, 𝑜4} and non-emerging ones {𝑜3, 𝑜5}. Note that the displacement estimations of emerging objects are
not reliable. Then, the association is performed in a two-stage manner. In the first stage, we associate non-emerging detections
{𝑜3, 𝑜5} to tracklets {𝑡1, 𝑡4, 𝑡5} visible in frame 𝐼𝑡−1 by warping detection centers through their displacement estimations. In
the second stage, we associate remaining tracklets {𝑡2, 𝑡3, 𝑡4} to remaining detections {𝑜1, 𝑜2, 𝑜4} by extending tracklets through
their historical velocity estimations. In this way, unreliable displacement estimations of emerging detections {𝑜1, 𝑜2, 𝑜4} are
recognized and dropped, and the identities of tracklets {𝑡2, 𝑡3} occluded in frame 𝑡 − 1 are preserved by motion cues.

During the inferring stage, a detection 𝑜𝑡 is regarded as an emerg-
ing one if its APP score 𝑎𝑡 is greater than a threshold 𝜏𝑎𝑝 . Its dis-
placement estimation d𝑡 is dropped as it is not reliable.

3.2 Training Strategies
3.2.1 Training on Videos. We use the MOT17 [26] dataset to train
our model. This dataset annotates the identity, bounding box, class,
and visibility for each object of interest in each frame. For a given
object 𝑖 in frame 𝑡 , we determine its appear label 𝑎𝑡

𝑖
by

𝑎𝑡𝑖 =

{
1 if 𝑣𝑖𝑠𝑡

𝑖
> 𝜏𝑣𝑖𝑠 and 𝑣𝑖𝑠𝑡−1𝑖

< 𝜏𝑣𝑖𝑠

0 otherwise
, (3)

where 𝜏𝑣𝑖𝑠 is the threshold above which an object is regarded as a
visible one, 𝑣𝑖𝑠𝑡

𝑖
and 𝑣𝑖𝑠𝑡−1

𝑖
are the visibility annotations of object 𝑖

in frame 𝑡 and 𝑡 − 1, respectively. After the label 𝑎𝑡
𝑖
is determined,

we use the rendering function in [18] to render the ground-truth
heatmap 𝐴𝑡 .

However, the visibility annotations provided by the MOT17
dataset are noisy. For a given object, its visibility is determined
based on the intersection-over-union (IoU) of its bounding box
against other bounding boxes. As shown in Fig. 3b, some annotated
visibilities are incorrect, leading to noisy labels for the detection
head and the APP head. To address it, the predictions of objects an-
notated with low visibility are ignored in training losses by adding
a circular mask on the ground-truth detection heatmap and the
ground-truth APP heatmap (shown in Fig. 3c). Further details on
the circular masking policy are provided in the supplement.

When training our model on video data, low-frame-rate videos
are generated by extracting frames from original videos through a

fixed interval 𝑛𝑑 . After that, for a given current frame 𝐼𝑡 , another
frame at time 𝑘 is randomly sampled as 𝐼𝑡−1 if |𝑘 − 𝑡 | < 3, where 𝑡
and 𝑘 are frame indexes in low-frame-rate videos.

3.2.2 Training on Static Images. Training the APP head on MOT17
alone cannot provide satisfying estimations for the emergence of
objects as the ratio of emerging samples is fairly low, typically
less than 10% among all instances. In CenterTrack [49], a single
image is randomly scaled and translated to create a pair of neigh-
boring frames so that the network can be pretrained on static image
datasets. Inspired by this, we propose a novel augmentation strat-
egy, random erasing, to pretrain the APP head simultaneously with
other heads on static image data. In particular, a visible object in
the original image is erased by placing a background patch on it.
The background patch is randomly sampled from the background
region within the same image. To avoid ambiguity in optical flow,
the patch should look different from the region where it is sampled
from. Thus, we sample two different background patches 𝑏𝑔1 and
𝑏𝑔2 at one time and a new patch 𝑏𝑔𝑚𝑖𝑥𝑒𝑑 is generate by blending
𝑏𝑔1 and 𝑏𝑔2:

𝑏𝑔𝑚𝑖𝑥𝑒𝑑 = 𝛾𝑏𝑔1 + (1 − 𝛾)𝑏𝑔2, (4)

where 𝛾 is a random weight following the uniform distribution of
[0.3, 0.7]. Several other augmentations, such as random flipping,
intensity jittering, and color channel shuffling are further adopted.
More details can be found in the supplement. Fig. 3d to Fig. 3f
visualize some training samples generated by the proposed ran-
domly erasing strategy. As shown in Section 4.4, this augmentation
strategy remarkably improves the robustness of the APP head.

APPTracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

(a) (b) (c) (d) (e) (f)

Figure 3: Visualization of training samples. A pair of images 𝐼𝑡−1 (a) and 𝐼𝑡 (b) are sampled from the MOT17 dataset. The person
inside the red box in 𝐼𝑡 is not visible in the previous frame 𝐼𝑡−1. A positive response is thus placed on the ground-truth APP
heatmap 𝐴𝑡 (c). Besides, although the person inside the blue box in 𝐼𝑡 is highly visible, its visibility is annotated to zero by the
MOT17 dataset, as the blue box is covered by the orange one. A circular mask is placed on the ground-truth APP heatmap (c)
to ignore the predictions of objects annotated with low visibilities. When training on static image data, the previous frame
𝐼𝑡−1 (d) is simulated by performing randomly scaling, translating, and erasing on the current frame 𝐼𝑡 (e). The corresponding
ground-truth APP heatmap 𝐴𝑡 is shown in (f).

3.3 Two-stage Matching with APP
To reduce the noise in the similarity matrix resulting from visibility
flipped objects and to leverage historical motion cues, we intro-
duce a two-stage matching strategy according to the appearing
predictions from the APP head.

The pseudo code for the two-stage matching is shown in Algo-
rithm 1. At each time step 𝑡 , before matching, we group the detec-
tions O𝑡 into emerging ones O𝑡𝑎𝑝 and otherwise O𝑡𝑎𝑐 by comparing
their APP scores with a threshold 𝜏𝑎𝑝 . Meanwhile, the tracklet set
L𝑡−1 is grouped into two subsets, active subset L𝑡−1𝑎𝑐 and inactive
subset L𝑡−1

𝑖𝑛𝑎𝑐
according to whether the tracklets have been matched

in frame 𝑡 − 1. As a result, the input consists of a set of emerging ob-
jects O𝑡𝑎𝑝 , a set of otherwise detections O𝑡𝑎𝑐 , a set of active tracklets
L𝑡−1𝑎𝑐 , and a set of inactive tracklets L𝑡−1

𝑖𝑛𝑎𝑐
.

In the first stage (line 2 to 9 in Algorithm 1), we link non-
emerging detections O𝑡𝑎𝑐 to active tracklets L𝑡−1𝑎𝑐 . Center locations
of non-emerging detections O𝑡𝑎𝑐 are warped to those in frame 𝑡 − 1
by their displacement estimations. The warped detection centers
are then matched with centers of active tracklets L𝑡−1𝑎𝑐 by Hungar-
ian Algorithm [17], taking the Euclidean distance as the similarity
measurement. Each matched tracklets 𝑙 is updated by the corre-
sponding detection 𝑜 . Note that the velocities of matched tracklets
are updated by the displacement estimations (line 7 in Algorithm 1).

In the second stage (line 10 to 17 in Algorithm 1), we link the
remaining tracklets (L𝑡−1

𝑖𝑛𝑎𝑐
∪ L𝑡−1

𝑟𝑒𝑚1) to the remaining detections
(O𝑡𝑎𝑝 ∪ O𝑡𝑟𝑒𝑚1). Center locations of tracklets (L

𝑡−1
𝑖𝑛𝑎𝑐
∪ L𝑡−1

𝑟𝑒𝑚1) are
warped to those in frame 𝑡 by their velocity estimations. In case
an inactive tracklet is matched in this stage, it is re-birthed and its
velocity is updated by the mean displacement during the invisible
period (line 15 in Algorithm 1).

Finally, we update the locations of the remained tracklets L𝑡−1
𝑟𝑒𝑚2

with a constant velocity assumption (line 18 to 21 in Algorithm 1)
and initialize new tracklets for remained detections O𝑡

𝑟𝑒𝑚2 with
zero velocities (line 22 to 25 in Algorithm 1).

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Datasets.We use two widely-used benchmarks, MOT17 [26] and
MOT20 [10], to conduct the experiments. MOT17 contains 7 train-
ing sequences and 7 testing sequences. The videos are captured by
stationary or moving cameras from various viewpoints. The video
frame rate varies from 14 to 30 FPS. MOT20 contains 4 training
sequences and 4 testing sequences of crowded scenes captured by
stationary cameras at 25 FPS. Besides, we pretrain our model on the
CrowdHuman dataset[32]. Following common practices in [47–49],
we split each training sequence in MOT17 and MOT20 into two
halves for experiments, and use the first half for training and the
rest for validation. We generate low-frame-rate videos by extracting
frames from original videos through fixed intervals. The intervals
will be specified in each experiment. For a given original video and
a given sampling interval 𝑛𝑑 , we generate 𝑛𝑑 low-frame-rate videos
with the first frame index varying from 1 to 𝑛𝑑 .
Evaluation Metrics.We use the IDF1 score [30] and the CLEAR
metrics [3], including MOT Accuracy (MOTA), number of identity
switches (IDs), false positives (FP), and false negatives (FN). MOTA
is computed based on FP, FN, and IDs. As the numbers of FP and FN
are usually much greater than IDs, MOTA is dominated by detection
performance. Instead, we focus on the IDF1 [30] score and IDs in
our experiments, which evaluate the ability of identity preservation
and focus more on the association performance.

4.2 Implementation Details
For the components of our model shared with CenterTrack [49],
we follow their architecture and training details. In particular, we
use DLA-34 [44] as the network backbone. We adopt the Adam [16]
optimizer with a learning rate of 1.25𝑒 − 4 and a batch size of 32.
The input images are resized and padded to the resolution of 960 ×
544. In addition to the data augmentation operations adopted by
CenterTrack [49], we adopt the random erasing operation proposed
in Section 3.2.2 when pretraining the model on the CrowdHuman
dataset. The model is firstly pretrained on the CrowdHuman dataset

MM ’22, October 10–14, 2022, Lisboa, Portugal Tao Zhou et al.

Algorithm 1: Pseudo Code of Cascade Matching.
Data: The emerging detection set O𝑡𝑎𝑝 , non-emerging

detection set O𝑡𝑎𝑐 , active tracklet set L𝑡−1𝑎𝑐 , inactive
tracklet set L𝑡−1

𝑖𝑛𝑎𝑐

Result: The tracklet set L𝑡
/* group detections beasd on APP scores */

1 Initialization: L𝑡 ← ∅

/* Stage 1: association with displacements */

2 associate O𝑡𝑎𝑐 and L𝑡−1𝑎𝑐 by estimated displacements
3 O𝑡

𝑟𝑒𝑚1 ← remaining objects from O𝑡𝑎𝑐
4 L𝑡−1

𝑟𝑒𝑚1 ← remaining objects from L𝑡−1𝑎𝑐

5 for 𝑙 in (L𝑡−1𝑎𝑐 \ L𝑡−1𝑟𝑒𝑚1) do
6 𝑙 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑜.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

7 𝑙 .𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ← 𝑜.𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

8 L𝑡 ← L𝑡 ∪ {𝑙}
9 end

/* Stage 2: association with velocities */

10 associate (O𝑡𝑎𝑝 ∪ O𝑡𝑟𝑒𝑚1) and (L
𝑡−1
𝑖𝑛𝑎𝑐
∪ L𝑡−1

𝑟𝑒𝑚1) by velocities
11 O𝑡

𝑟𝑒𝑚2 ← remaining objects from (O𝑡𝑎𝑝 ∪ O𝑡𝑟𝑒𝑚1)
12 L𝑡−1

𝑟𝑒𝑚2 ← remaining objects from (L𝑡−1
𝑖𝑛𝑎𝑐
∪ L𝑡−1

𝑟𝑒𝑚1)

13 for 𝑙 in (L𝑡−1
𝑖𝑛𝑎𝑐
∪ L𝑡−1

𝑟𝑒𝑚1 \ L
𝑡−1
𝑟𝑒𝑚2) do

14 𝑙 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑜.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

15 𝑙 .𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ←𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

16 L𝑡 ← L𝑡 ∪ {𝑙}
17 end

/* update inactive tracklets */

18 for 𝑙 in L𝑡−1
𝑟𝑒𝑚2 do

19 𝑙 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑙 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑙 .𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
20 L𝑡 ← L𝑡 ∪ {𝑙}
21 end

/* initialize new tracklets */

22 for 𝑜 𝑖𝑛 O𝑡
𝑟𝑒𝑚2 do

23 𝑜.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ← 0
24 L𝑡 ← L𝑡 ∪ {𝑜}
25 end

for 160 epochs. The learning rate is dropped by a factor of 10 at the
140𝑡ℎ epoch. Then we fine-tune the model on the MOT17 dataset
by 80 epochs and drop the learning rate by a factor of 10 at the 60𝑡ℎ
epoch. During training, the visibility threshold 𝜏𝑣𝑖𝑠 is 0.25 and the
loss weight _𝑎 is 1. During inferring, the APP score threshold 𝜏𝑎𝑝 is
0.4. We follow the default settings of other hyper-parameters from
CenterTrack [49]. We provide further details in the supplement.

4.3 Appear Prediction
We first investigate the benefit of engaging the APP head in low-
frame-rate cases. In this study, the low-frame-rate inputs are gen-
erated by extracting frames from original videos through a fixed
interval of 𝑛𝑑 = 10.

Table 1: Comparison between several model variants on the
MOT17 validation set. “Pred" is short for predictions. “Pred-
inv" represents deriving predictions by temporally flipping
the order of the input frames.

Appear Disappear IDF1(↑) IDs(↓) FP(↓) FN(↓)
- - 64.7 2304 1819 14824

Pred - 65.6 2050 1817 14822

- Pred 64.9 2466 1812 14817
- Pred-inv 65.2 2246 1817 14822

Pred Pred-inv 65.7 2103 1815 14820

By comparing the first two rows in Table 1, a reduction of 11% on
IDs is observed by using the appearing prediction and the two-stage
matching policy. Further, in Fig. 4, we analyze its improvement espe-
cially in preserving the identities of objects involved in occlusions.

In particular, objects of interest are selected following two stan-
dards. 1) Before being occluded, the object should be continuously
visible for at least two frames. This is the minimal sufficient time
to estimate its velocity. 2) The visibility should flip at least twice,
one for becoming occluded and the other for appearing again. In
practice, we introduce two thresholds 𝜏ℎ𝑖𝑔ℎ and 𝜏𝑙𝑜𝑤 to derive reli-
able visibility flipping counts. For an object 𝑖 with the visible ratio
𝑣𝑖𝑠

𝑡1
𝑖

> 𝜏ℎ𝑖𝑔ℎ in frame 𝐼𝑡1 , and with 𝑣𝑖𝑠
𝑡2
𝑖

< 𝜏𝑙𝑜𝑤 in a future frame
𝐼𝑡2 , its visibility is regarded to flip once, and verse visa. We set
𝜏ℎ𝑖𝑔ℎ = 0.4 and 𝜏𝑙𝑜𝑤 = 0.15.

Fig. 4 plots the IDs metric values achieved by models with and
without APP head in each validation video of MOT17 and MOT20
datasets. Themodels are trained onMOT17 andMOT20 individually.
Besides, we use yellow bars to indicate the ratio of visibility flips
𝑟𝑣𝑓 𝑙𝑖𝑝 calculated by

𝑟𝑣𝑓 𝑙𝑖𝑝 =
𝑛𝑣𝑓 𝑙𝑖𝑝

𝑛𝑔𝑡
, (5)

where 𝑛𝑣𝑓 𝑙𝑖𝑝 is the sum of visibility flips for all objects of interest,
𝑛𝑔𝑡 is the number of all ground-truth bounding boxes. For better
comparison, we normalize the IDs by the number of visibility flips.
Formally, the normalized IDs 𝑟𝐼𝐷𝑠 is calculated by

𝑟𝐼𝐷𝑠 =
𝐼𝐷𝑠

𝑛𝑣𝑓 𝑙𝑖𝑝
, (6)

where 𝐼𝐷𝑠 is the count of identity switches of all objects of inter-
est. 𝑟𝐼𝐷𝑠 ranges from 0 to 2, since one incorrect association may
lead to two IDs at the most. Our approach shows improvement
on most videos, especially on crowded ones, such as MOT17-09,
MOT17-11, MOT20-01, and MOT20-02. For videos with stochastic
and catastrophic camera motions, such as MOT17-05, MOT17-10,
and MOT17-13, the constant velocity assumption fails to estimate
correct motion even though the emerging objects are precisely
recognized. Qualitative results can be found in the supplement.
Model Variants. Symmetrically to the APP head, we also study
the benefit of adopting a “disappearing” prediction (DISAPP) head
in Table 1. The DISAPP head is trained to recognize objects which
are visible in the previous frame 𝐼𝑡−1 but are invisible in the cur-
rent frame 𝐼𝑡 . However, as is stated below, how to obtain robust
“disappearing” predictions is not that straightforward.

APPTracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

17-02

17-04

17-05

17-09

17-10

17-11

17-13

20-01

20-02

20-03

20-04

V
id

eo
 se

qu
en

ce
s

Normalized visibility flip count
Normalized IDs without APP predictions
Normalized IDs with APP predictions

Figure 4: The performance improvement on preserving iden-
tities of objects involved in occlusions.

We first train a DISAPP head following the same settings as those
for training the APP head. However, the IDs (third row in Table 1)
even becomes higher than that of the baseline (first row in Table 1).
The reason lies in that the information of the two input frames
{𝐼𝑡−1, 𝐼𝑡 } is not fairly utilized by the model. Specifically, before
being accumulated and sent into the backbone network, 𝐼𝑡 first goes
through a 7 × 7 convolution layer whose weights are pretrained
together with the backbone network on the COCO dataset [22].
However, 𝐼𝑡−1 first goes through another 7 × 7 convolution layer
whose weights are randomly initialized.

To address this issue, we explore another way to derive accurate
“disappearing” predictions from theAPP head by temporally flipping
the order of the input frames 𝐼𝑡−1 and 𝐼𝑡 . No re-training is required
since we also sample frame pairs with inverse time orders during
training. With such a strategy, the DISAPP predictions bring a
reduction of 2.5% on IDs (the fourth row in Table 1). By comparing
the second and the fourth rows, we can find the improvement
engaged by the DISAPP head is not as remarkable as that engaged
by the APP head. The reason is that, the unreliable displacement
predictions of emerging detections in the current frame may lead
them to compete for the tracklets against the correct detections,
resulting in the identity switch twice. Instead, at the current time
step, the model does not predict displacements for tracked objects in
the previous frame. No competition is thus involved by disappeared
objects. As a result, we only keep the APP head in the following
experiments, since no extra improvement is observed by engaging
DISAPP predictions.

4.4 Ablation Study
Table 2. Further, we ablate other components of our method, includ-
ing the proposed data augmentation policy, the proposed two-stage
matching strategy, and the optical-flow-based motion estimator.
Random Erasing Augmentation. As shown in the first row in
Table 2, the APP head trained only on the MOT17 dataset fails
to generate robust predictions. The proposed data augmentation
policy engages a remarkable reduction of 512 in IDs (second row
in Table 2).

Table 2: Variants evaluated on the MOT17 validation set.
“Aug." indicates the proposed data augmentation policy.
“Hght." stands for engaging height distance in association.
“Thresh." represents using step-wise thresholds in cascade
matching.

Aug. Hght. Thresh. IDF1(↑) IDs(↓) FP(↓) FN(↓)
63.8 2562 2064 15620

✓ 65.6 2050 1817 14822
✓ ✓ 67.0 1940 1819 14824
✓ ✓ 69.4 1731 1801 14806
✓ ✓ ✓ 70.3 1686 1802 14807

Table 3: Comparison of different motion models with differ-
ent frame rate inputs on the MOT17 validation set. “Opt."
stands for the optical-flow-based motion estimator.

Frame rate Motion model IDF1(↑) IDs(↓) FP(↓) FN(↓)
Normal Opt. + Static 69.5 353 2018 14528
Normal Opt. + Constant 68.7 326 2005 14515
Normal Kalman Filter 72.0 321 2011 14543

Low Opt. + Static 64.6 3971 1785 14790
Low Opt. + Constant 70.3 1686 1802 14807
Low Kalman Filter 60.4 5679 1966 15034

Height Gating. While CenterTrack [49] drops the similarity of
box sizes during association, we pick it up by rejecting matchings
with unreasonable height distances. Formally, the height distance
𝑑ℎ
𝑖 𝑗
of a detection bounding box 𝑖 and a tracklet bounding box 𝑗 is

calculated by

𝑑ℎ𝑖 𝑗 =
|ℎ𝑖 − ℎ 𝑗 |

𝑚𝑎𝑥 (ℎ𝑖 , ℎ 𝑗)
, (7)

where ℎ𝑖 and ℎ 𝑗 are the height of the detection bounding box 𝑖 and
that of the tracklet bounding box 𝑗 , respectively. Assignments with
a height distance larger than a threshold 𝜏ℎ = 0.33 are rejected.
Step-wise Matching Thresholds. Originally, we follow Center-
Track to reject an assignment (𝑜𝑡

𝑖
, 𝑙𝑡−1
𝑗
) if the Euclidean distance

between their centers (after warping) is larger than ^ =

√︃
𝑤𝑡−1
𝑗

ℎ𝑡−1
𝑗

,

where𝑤𝑡−1
𝑗

and ℎ𝑡−1
𝑗

are the width and height of tracklet 𝑙𝑡−1
𝑗

. To
avoid ambiguous assignments in the first stage, a step-wise thresh-
old policy is adopted by setting the thresholds to 2

3^ and ^ in the
first and the second matching stages, respectively.
Motion Models.We evaluate the effectiveness of a Kalman filter
and the optical-flow-based motion estimator that we adopt from
CenterTrack with different frame rate inputs in Table 3. For the
optical-flow-based estimator, we also evaluate two motion models,
a static model, and a constant velocity model, which are adopted
to leverage historical motion cues, as introduced in Section 3.3.
For low-frame-rate evaluations, we extract frames from original
videos through a fixed interval of 𝑛𝑑 = 10. We have the following
findings. First, though the static model performs reasonably well
in normal-frame-rate videos due to the large overlap of the same

MM ’22, October 10–14, 2022, Lisboa, Portugal Tao Zhou et al.

1 2 3 6 10 15 30

55

60

65

70

75

ID
F1

FairMOT
FairMOT*
ByteTrack*
Tracktor++
CenterTrack
Ours

(a)

1 2 3 6 10 15 30

25

30

35

40

45

FN
(%

)

FairMOT
FairMOT*
ByteTrack*
Tracktor++
CenterTrack
Ours

(b)

Figure 5: Comparison between our method and several state-
of-the-art methods on the MOT17 validation set with differ-
ent frame rate inputs. The IDF1 score (a) and the FN (b) are
reported.

target between frames, it fails in low-frame-rate cases. Second,
although the Kalman filter gets a better IDF1 score of 72.0% in
normal-frame-rate cases, the remarkable advantages of our method
are demonstrated when the frame rate becomes lower. We suspect
that, in normal-frame-rate cases, the motion information contains
a large portion of noise caused by the jitter of detections. Kalman
filter can filter out such measurement noise while the optical-flow-
based estimator and the constant velocity model are influenced by
such noise. However, the influence of such noise is reduced as the
displacements of objects become larger in low-frame-rate videos.
Without a good initial velocity estimation (the velocity of an object
is usually initialized to zero) or a good velocity measurement, the
Kalman filter fails to chase objects in low-frame-rate cases.
Full Method. Based on the analysis above, we adopt the augmen-
tation policy, height gating, step-wise matching thresholds, and
the constant velocity assumption as our full method, whose perfor-
mance is shown in the last row in Table 2.

4.5 Comparison with SOTA Methods
In this section, we compare our method with several existing repre-
sentative methods in the settings of different frame rate inputs: Fair-
MOT [48] (re-identification-based method), ByteTrack [47] (motion-
model-basedmethod), Tracktor++ [2] (detector-basedmethod), Cen-
terTrack [49] (optical-flow-based method). All these methods, ex-
cept FairMOT, are evaluated with the same detection set. Evaluating
FairMOT with private detections may harm the extracting of re-
identification embeddings. The detector inside FairMOT is thus
kept during evaluation, which performs slightly better than ours.
Due to the space limit, We report the IDF1 score and the FN in Fig. 5.
Full results can be found in the supplement.
FairMOT. FairMOT [48] jointly accomplishes the tasks of object de-
tection and re-identification in a single network. Besides, it adopts a
Kalman filter to exploit motion cues. Associations with low overlaps
are rejected. To reduce false alarms, it allows an object to spawn
a new tracklet only if it is continuously visible for at least two
frames (except objects in the first frame). The rejection policy and
the strict spawning policy lead to an intolerable increase in FN in
low-frame-rate cases.

FairMOT*. To test the performance of the re-identification head of
FairMOT [48], we disable the Kalman filter together with the strict
spawning strategy inside the original FairMOT method. While FN
stops increasing, the drops in IDF1 indicate the re-identification
performance suffers from the large appearance variations of objects
in low-frame-rate cases.
ByteTrack*. ByteTrack [47] proposes to associate low score detec-
tions with motion cues. Similar to FairMOT, Kalman filter and the
strict spawning strategy are adopted. To avoid unexpected increases
in FN, the strict spawning strategy is disabled when evaluating the
ByteTrack in our experiments. The method is evaluated with the
detections from our model. Though its performance in normal-
frame-rate cases is good, it drops more quickly than other methods
since no other information (e.g., appearance embeddings, optical
flows) except motion cues is leveraged in the association.
Tracktor++. Tracktor++ [2], assuming that bounding boxes of the
same target have a large overlap between frames, propagates the
identity of a region proposal to the next frame by bounding box
regression. To evaluate Tracktor++, we take the detection set gen-
erated by our model as input. However, degeneration in detection
performance is observed due to subsequent non-maximum sup-
pression (NMS) operations inside the Tracktor++. As its primary
assumption does not hold when the frame rate becomes low, the
IDF1 decreases quickly.
CenterTrack. To evaluate CenterTrack [49], we use the same detec-
tion set from our model but use its original tracking management.
Compared with other methods, the performance drop of Center-
Track is not that significant. With a temporally local displacement
estimator and a large receptive field, it is more robust to large
displacements and large camera motions in low-frame-rate cases.
Ours. Enabled by the proposed APP head and the two-stage match-
ing strategy, our method overcomes the local weakness of Center-
Track [49], thus achieving consistent improvement in IDF1 score
compared to the CenterTrack [49] and outperforms the state-of-
the-art methods in low-frame-rate cases.

5 CONCLUSION
In this paper, we have studied the challenges of tracking multiple
objects in low-frame-rate videos. An online tracker is proposed
to address these challenges. Based on a tracker with a local dis-
placement estimator, we design an APP head together with a novel
augmentation strategy to robustly filter out unreliable displacement
estimations due to frequent visibility flips in low-frame-rate cases.
A two-stage matching policy is further proposed to reduce the noise
inside the similarity matrix before matching and to leverage his-
torical motion cues. Experiments on public datasets with various
frame rate settings verify the effectiveness and robustness of our
method.

ACKNOWLEDGMENTS
This work was supported in part by NSFC under Grants 62088101,
U21A20456, 62103372, the 5G Open Laboratory of Hangzhou Future
Sci-Tech City and the Fundamental Research Funds for the Central
Universities.

APPTracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

REFERENCES
[1] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. 2015. Delving deeper

into convolutional networks for learning video representations. arXiv preprint
arXiv:1511.06432 (2015).

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. 2019. Tracking without
bells and whistles. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 941–951.

[3] Keni Bernardin and Rainer Stiefelhagen. 2008. Evaluating multiple object track-
ing performance: the clear mot metrics. EURASIP Journal on Image and Video
Processing 2008 (2008), 1–10.

[4] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. 2016.
Simple online and realtime tracking. In 2016 IEEE international conference on
image processing (ICIP). IEEE, 3464–3468.

[5] Guillem Brasó and Laura Leal-Taixé. 2020. Learning a neural solver for multiple
object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 6247–6257.

[6] Peng Chu, Jiang Wang, Quanzeng You, Haibin Ling, and Zicheng Liu. 2021.
Transmot: Spatial-temporal graph transformer for multiple object tracking. arXiv
preprint arXiv:2104.00194 (2021).

[7] Xuangeng Chu, Anlin Zheng, Xiangyu Zhang, and Jian Sun. 2020. Detection
in crowded scenes: One proposal, multiple predictions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12214–12223.

[8] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. 2017. Deformable convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision. 764–773.

[9] Peng Dai, Renliang Weng, Wongun Choi, Changshui Zhang, Zhangping He, and
Wei Ding. 2021. Learning a proposal classifier for multiple object tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2443–2452.

[10] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers,
Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. 2020. Mot20:
A benchmark for multi object tracking in crowded scenes. arXiv preprint
arXiv:2003.09003 (2020).

[11] Song Guo, Jingya Wang, Xinchao Wang, and Dacheng Tao. 2021. Online multiple
object tracking with cross-task synergy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 8136–8145.

[12] Jiawei He, Zehao Huang, Naiyan Wang, and Zhaoxiang Zhang. 2021. Learnable
graph matching: Incorporating graph partitioning with deep feature learning for
multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 5299–5309.

[13] Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction
problems. (1960).

[14] Chanho Kim, Li Fuxin, Mazen Alotaibi, and James M Rehg. 2021. Discriminative
appearance modeling with multi-track pooling for real-time multi-object track-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 9553–9562.

[15] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M Rehg. 2015. Multiple
hypothesis tracking revisited. In Proceedings of the IEEE international conference
on computer vision. 4696–4704.

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[18] Hei Law and Jia Deng. 2018. Cornernet: Detecting objects as paired keypoints.
In Proceedings of the European conference on computer vision (ECCV). 734–750.

[19] Chao Liang, Zhipeng Zhang, Yi Lu, Xue Zhou, Bing Li, Xiyong Ye, and Jianxiao
Zou. 2020. Rethinking the competition between detection and reid in multi-object
tracking. arXiv preprint arXiv:2010.12138 (2020).

[20] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[23] Wenhan Luo, Björn Stenger, Xiaowei Zhao, and Tae-Kyun Kim. 2018. Trajectories
as topics: Multi-object tracking by topic discovery. IEEE Transactions on Image
Processing 28, 1 (2018), 240–252.

[24] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae-Kyun
Kim. 2021. Multiple object tracking: A literature review. Artificial Intelligence
293 (2021), 103448.

[25] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichten-
hofer. 2021. Trackformer: Multi-object tracking with transformers. arXiv preprint
arXiv:2101.02702 (2021).

[26] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016.
MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831
(2016).

[27] Jinlong Peng, Changan Wang, Fangbin Wan, Yang Wu, Yabiao Wang, Ying Tai,
Chengjie Wang, Jilin Li, Feiyue Huang, and Yanwei Fu. 2020. Chained-tracker:
Chaining paired attentive regression results for end-to-end joint multiple-object
detection and tracking. In European conference on computer vision. Springer,
145–161.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015).

[30] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi.
2016. Performance measures and a data set for multi-target, multi-camera track-
ing. In European conference on computer vision. Springer, 17–35.

[31] Fatemeh Saleh, Sadegh Aliakbarian, Hamid Rezatofighi, Mathieu Salzmann, and
Stephen Gould. 2021. Probabilistic tracklet scoring and inpainting for multiple
object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 14329–14339.

[32] Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and Jian
Sun. 2018. CrowdHuman: A Benchmark for Detecting Human in a Crowd. arXiv
preprint arXiv:1805.00123 (2018).

[33] Daniel Stadler and Jurgen Beyerer. 2021. Improving multiple pedestrian tracking
by track management and occlusion handling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 10958–10967.

[34] Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie, Zehuan Yuan, Changhu
Wang, and Ping Luo. 2020. Transtrack: Multiple object tracking with transformer.
arXiv preprint arXiv:2012.15460 (2020).

[35] ShiJie Sun, Naveed Akhtar, XiangYu Song, HuanSheng Song, Ajmal Mian, and
Mubarak Shah. 2020. Simultaneous detection and tracking with motion modelling
for multiple object tracking. In European Conference on Computer Vision. Springer,
626–643.

[36] Ramana Sundararaman, Cedric De Almeida Braga, Eric Marchand, and Julien
Pettre. 2021. Tracking pedestrian heads in dense crowd. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3865–3875.

[37] Pavel Tokmakov, Jie Li, Wolfram Burgard, and Adrien Gaidon. 2021. Learning
to track with object permanence. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 10860–10869.

[38] QiangWang, Yun Zheng, Pan Pan, and Yinghui Xu. 2021. Multiple object tracking
with correlation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 3876–3886.

[39] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. 2020.
Towards real-time multi-object tracking. In European Conference on Computer
Vision. Springer, 107–122.

[40] NicolaiWojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and realtime
tracking with a deep association metric. In 2017 IEEE international conference on
image processing (ICIP). IEEE, 3645–3649.

[41] Jiarui Xu, Yue Cao, Zheng Zhang, and Han Hu. 2019. Spatial-temporal relation
networks for multi-object tracking. In Proceedings of the IEEE/CVF international
conference on computer vision. 3988–3998.

[42] Yihong Xu, Yutong Ban, Guillaume Delorme, Chuang Gan, Daniela Rus, and
Xavier Alameda-Pineda. 2021. Transcenter: Transformers with dense queries for
multiple-object tracking. arXiv preprint arXiv:2103.15145 (2021).

[43] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. 2021. Center-based 3d object
detection and tracking. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 11784–11793.

[44] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. 2018. Deep layer
aggregation. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2403–2412.

[45] Yang Zhang, Hao Sheng, Yubin Wu, Shuai Wang, Wei Ke, and Zhang Xiong.
2020. Multiplex labeling graph for near-online tracking in crowded scenes. IEEE
Internet of Things Journal 7, 9 (2020), 7892–7902.

[46] Yang Zhang, Hao Sheng, Yubin Wu, Shuai Wang, Wei Ke, and Zhang Xiong.
2020. Multiplex labeling graph for near-online tracking in crowded scenes. IEEE
Internet of Things Journal 7, 9 (2020), 7892–7902.

[47] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan, Ping Luo, Wenyu
Liu, and Xinggang Wang. 2021. ByteTrack: Multi-Object Tracking by Associating
Every Detection Box. arXiv preprint arXiv:2110.06864 (2021).

[48] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. 2021.
Fairmot: On the fairness of detection and re-identification in multiple object
tracking. International Journal of Computer Vision 129, 11 (2021), 3069–3087.

[49] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. 2020. Tracking objects as
points. In European Conference on Computer Vision. Springer, 474–490.

[50] Zongwei Zhou, Wenhan Luo, Qiang Wang, Junliang Xing, and Weiming Hu. 2020.
Distractor-aware discrimination learning for online multiple object tracking.
Pattern Recognition 107 (2020), 107512.

MM ’22, October 10–14, 2022, Lisboa, Portugal Tao Zhou et al.

A FURTHER IMPLEMENTATION DETAILS
CrowdHuman Dataset and the Random Erasing Strategy. The
training split of the CrowdHuman dataset [32] contains 15000 im-
ages characterized by high density and heavy occlusion. As shown
in Fig. 6, both the visible-region bounding box and the full-body
(amodal) bounding box for each human instance are provided. We
follow the training settings in [49], using the input resolution of
512 × 512, and applying the same augmentations (random flipping,
intensity jittering, random shift, random scaling, etc.) to the addi-
tional input 𝐻𝑡−1 as [49]. To simulate the larger displacements in
low-frame-rate cases, we enlarge the x-axis random shift ratio in
[49] to 0.1, but keep the y-axis random shift ratio as 0.05. To erase
a visible human instance, we fill the corresponding visible-region
bounding box with a mixed background patch, as introduced in
Section 3.2.2 of the main paper. However, we require the model to
regress the full-body bounding box for each object to align with
MOT17 [26].

As the objects in the Crowdhuman dataset are usually partially
occluded, erasing a visible objects may destroy several surrounding
objects. To minimize destroying other objects and to avoid con-
fusable “appearing” labels, we first check the overlap area ratios
between objects and determine whether an object can be erased. An
object is allowed to be erased only if it overlaps with surrounding
objects slightly (less than 15%) or heavily enough (greater than
85%). Among all instances, about 15% visible objects are randomly
erased.

Visible-region bounding box

Full-body bounding box

Figure 6: An illustrative example of visible-region bounding
box and full-body bounding box annotations.

MOTDatasets and theCircularMaskingPolicy. For theMOT17 [26]
and MOT20 [10] datasets, we use the input resolution of 960 × 544.
No random erasing is adopted. Individual models are trained and
evaluated on each dataset. For a given frame, each object is an-
notated with a full-body bounding box, a tracking identity, and a
visibility ratio. CenterTrack [49] drops annotations of objects with
low visibility. As a result, positive detection responses on these ob-
jects are punished by the loss function. However, as introduced in
Section 3.2.1 of the main paper, the visibility annotations are noisy.
Dropping these annotations may lead to ambiguous supervision.
To avoid it, we ignore the predictions on objects annotated with
low visibility. Since no visible-region bounding box annotations
are available on MOT17 or MOT20, we place circular masks on
the ground-truth detection heatmap 𝑌 𝑡 and the ground-truth ap-
pearing heatmap 𝐴𝑡 at the center locations of instances with low
visibility annotations, so that predictions on other instances are not

Table 4: Comparison between models with or without the
circular masking policy on the MOT17 validation set (𝑛𝑑 =

10).

Circular mask MOTA(↑) IDF1(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDs(↓)
× 61.9 68.3 39.5 21.8 1741 16998 1537
✓ 65.5 70.3 43.5 18.2 1802 14807 1686

Table 5: Buffer sizes for different settings of 𝑛𝑑 .

Sampling interval 𝑛𝑑 1 2 3 6 10 15 30

Buffer size 30 15 10 10 10 6 3

influenced. Fig. 3c in the main paper shows an example. Formally,
the prediction on the pixel (𝑥,𝑦) is ignored if

𝑒𝑥𝑝 (− (𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)2

2𝜎2
𝑖

) > 0.3, (8)

where (𝑥𝑖 , 𝑦𝑖) is the ground-truth center location of a low visible
object 𝑖 , 𝜎𝑖 is a function of the object size [18]. As shown in Table 4,
the remarkable reduction in FN and the improvement in IDF1 score
validate the effectiveness of the above masking policy. The experi-
ments are conducted with low-frame-rate inputs of the sampling
interval 𝑛𝑑 = 10.

B BUFFER SIZE
A proper buffer size, above which an inactive tracklet is terminated,
is required for preserving the identities of objects involved in occlu-
sions. In Fig. 7, we search the optimal buffer size in low-frame-rate
cases (𝑛𝑑 = 10). According to Fig. 7, we adopt the buffer size of 10
for low-frame-rate videos of the sampling interval 𝑛𝑑 = 10. Table 5
lists the buffer sizes we adopted for different 𝑛𝑑 settings when eval-
uating our method and state-of-the-art methods in Section 4.5 of
the main paper.

2 4 6 8 10 12 14 16 18 20

1600

1800

2000

2200

2400

2600

ID
s

66

67

68

69

70

71

ID
F1

IDs
IDF1

Figure 7: Tracking performance with different buffer size
settings on the MOT17 validation set (𝑛𝑑 = 10).

APPTracker: Improving Tracking Multiple Objects in Low-Frame-Rate Videos MM ’22, October 10–14, 2022, Lisboa, Portugal

MOT20-02

MOT17-02 MOT17-09

MOT17-11

Figure 8: Qualitative results of our method. Each row shows three consecutive frames. Bounding boxes with different colors
represent different identities. We highlight recognized appearing objects by indicating the predicted APP scores on the right
top of corresponding bounding boxes. Pink arrows indicate displacement estimations, which are not reliable for appearing
objects. White arrows indicate the updated velocity estimations. Best viewed in color and by zoom in.

C FULL RESULTS OF SOTA METHODS
We list the full results of evaluating our method and state-of-the-
art methods with different frame settings in Table 6, Table 7, and
Table 8.

The metrics include MOT accuracy (MOTA) [3], identity F1 score
(IDF1) [30], mostly tracked (MT), mostly lost (ML), false positives
(FP), false negatives (FN), and number of identity switches (IDs). An
object is regarded as a mostly tracked (MT) one if it is tracked for at
least 80% of its life span (whether the assigned identity changes or
not). Instead, if an object is tracked for less than 20% of its life span,
it is regarded as a mostly lost (ML) one. The MOTA is calculated
by:

𝑀𝑂𝑇𝐴 = 1 −
∑
𝑡 (𝐹𝑁𝑡 + 𝐹𝑃𝑡 + 𝐼𝐷𝑠𝑡)∑

𝑡 𝐺𝑇𝑡
, (9)

where 𝑡 is the frame index, 𝐹𝑁𝑡 , 𝐹𝑃𝑡 , 𝐼𝐷𝑠𝑡 , and𝐺𝑇𝑡 are the number
of false negatives, false positives, identity switches, and ground-
truth bounding boxes in frame 𝐼𝑡 , respectively. Note that a lower
value of IDs, such as the fourth entry (Tracktor++) in Table 6, does
not necessarily indicate a better association performance if it is
accompanied by a much higher FN.

All these methods, except FairMOT, are evaluated with our de-
tection set. Our detector, enabled by the circular masking policy,
performs better than that of the baseline [49]. As mentioned in
Section 4.5 of the main paper, evaluating FairMOT with other detec-
tion sets may harm the extracting of re-identification embeddings.
FairMOT is thus evaluated with its own detection set.

Table 6: Full results of evaluating methods on the MOT17
validation set (𝑛𝑑 = 1).

Method MOTA(↑) IDF1(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDs(↓)
FairMOT [48] 69.1 72.8 42.2 15.6 1977 14439 298
FairMOT* [48] 68.4 69.5 42.8 14.5 2369 14138 541
ByteTrack* [47] 68.8 73.0 42.5 19.8 2047 14497 262
Tracktor++ [2] 58.3 68.7 36.6 19.8 4427 17946 146
CenterTrack [49] 68.7 69.4 41.3 18.6 2016 14526 347

Ours 68.7 68.7 41.3 18.9 2005 14515 326

Table 7: Full results of evaluating methods on the MOT17
validation set (𝑛𝑑 = 10).

Method MOTA(↑) IDF1(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDs(↓)
FairMOT [48] 58.3 66.5 25.8 28.6 1107 18577 2436
FairMOT* [48] 61.1 61.5 46.3 13.8 2393 14150 4454
ByteTrack* [47] 58.1 61.5 41.7 20.6 1729 15175 5282
Tracktor++ [2] 49.4 63.7 32.8 21.5 4761 19080 2824
CenterTrack [49] 65.0 67.4 43.7 18.4 1788 14793 1941

Ours 65.5 70.3 43.5 18.2 1802 14807 1686

Table 8: Full results of evaluating methods on the MOT17
validation set (𝑛𝑑 = 30).

Method MOTA(↑) IDF1(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDs(↓)
FairMOT [48] 44.5 55.1 25.0 36.2 922 23580 4274
FairMOT* [48] 55.5 56.7 51.4 15.7 2389 14195 7434
ByteTrack* [47] 49.4 54.9 42.8 25.4 1438 15668 8502
Tracktor++ [2] 42.7 58.6 36.7 25.1 4815 18599 5051
CenterTrack [49] 59.3 62.9 46.3 22.2 1563 14833 4205

Ours 59.8 66.2 46.3 22.2 1591 14861 3890

D QUALITATIVE RESULTS
In Fig. 8, we visualize four cases selected from the validation sets
of MOT17 and MOT20. It can be observed that emerging objects
are accurately recognized and the identities of objects involved in
occlusions are preserved.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tracking by Detection
	2.2 Joint Detection and Tracking
	2.3 Tracking Objects in Challenging Scenarios

	3 Proposed Method
	3.1 Learning to Recognize Appearing Objects
	3.2 Training Strategies
	3.3 Two-stage Matching with APP

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Appear Prediction
	4.4 Ablation Study
	4.5 Comparison with SOTA Methods

	5 Conclusion
	Acknowledgments
	References
	A Further implementation details
	B Buffer Size
	C Full results of sota methods
	D Qualitative Results

